
Complete	Controllable	Distributed	
Tes3ng	

R.	M.	Hierons	
Brunel	University	London,	UK	
rob.hierons@brunel.ac.uk	

hDp://people.brunel.ac.uk/~csstrmh	

TAROT 2016

Challenges	in	Tes3ng	

•  These	include:	
–  Scale	
–  Concurrency	
– Distribu3on	

–  The	Oracle	Problem	(checking	test	output).	

•  Currently	expensive,	error-prone,	mainly	manual.	
•  Possible	solu3on:	model-based	tes3ng.	

TAROT 2016

Formal	languages	used	

•  Typically	have	states	and	transi3ons	between	
states	triggered	by	ac3ons.	

•  Many	based	on	one	of:	
– Finite	state	machines	(FSMs)	
– Labelled	transi3on	systems	(LTSs)	

•  Tools	might	translate	models	to	either	FSMs	
or	LTSs.	

TAROT 2016

Assump3ons	

	
– Usually	we	only	observe	interac3ons	between	the	
system	under	test	(SUT)	and	its	environment	-		
black-box	tes-ng.	

– To	reason	about	test	effec3veness	we	assume:	
•  The	behaviour	of	the	SUT	can	be	expressed	in	the	same	
language	as	the	model.	

– This	allows	us	to	define	implementa-on	rela-ons	
between	models.	

TAROT 2016

Finite	State	Machines	and	MBT	

TAROT 2016

Finite	State	Machines	
•  The	behaviour	of	M	in	state	si	is	defined	by	the	
(regular)	set	of	input/output	sequences	(traces)	from	si	

TAROT 2016

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

Implementa3on	rela3ons	
•  Assuming	all	models	are	completely-specified,	
these	are:	
–  Equivalence	for	determinis3c	FSMs.	
–  Language	inclusion	for	nondeterminis3c	FSMs.	

•  There	are	efficient	algorithms	for	deciding	these	
proper3es,	so:	
–  If	we	know	that	the	SUT	behaves	like	FSM	N	and	we	
have	specifica3on	FSM	M	then	we	can	determine	
whether	N	conforms	to	M.	

•  We	will	focus	on:	determinis-c	FSMs.	

TAROT 2016

Fault	Domains	

•  A	set	of	models	that	represent	poten3al	
behaviours	of	the	system.	

•  Standard	fault	domains	for	tes3ng	from	an	
FSM	M	with	n	states:	
– The	SUT	behaves	like	an	unknown	FSM	N	with	at	
most	n	states.	

– The	SUT	behaves	like	an	unknown	FSM	N	with	at	
most	m	states	(some	m>n).	

TAROT 2016

Complete	test	suites	
•  A	test	suite	T	is	m-complete	when	tes3ng	against	
M	if:	
–  For	every	FSM	N	with	no	more	than	m	states,	if	N	
does	not	conform	to	M	then	there	is	a	test	sequence	
in	T	that	demonstrates	this.	

•  Implicit:	fixed	input	and	output	alphabets.	

•  If	the	SUT	sa3sfies	these	condi3ons	then	such	a	
test	suite	determines	correctness:	
–  If	the	SUT	passes	the	test	suite	then	either	it	is	correct	
or	has	more	than	m	states.	

TAROT 2016

Existence	of	m-complete	test	suites	

•  We	can	produce	an	m-complete	test	suite:	
– For	each	FSM	N	with	no	more	than	m	states	we:	

•  Determine	whether	N	conforms	to	specifica3on	M.	
•  If	N	does	not	conform	to	M	then	we	add	a	test	
sequence	that	demonstrates	this.	

•  These	steps	are	computable	(and	there	are	
finitely	many	FSMs	to	consider).	

TAROT 2016

Smaller	test	suites	

•  There	are	more	efficient	algorithms.	
•  Many	build	test	sequences	from	‘parts’	that:	

– Reach	a	state	s.	
– Dis3nguish	two	states	s	and	s’	(or	dis3nguish	
every	pair	of	states).	

•  For	determinis3c	FSMs	these	‘parts’	can	be	
produced	in	low-order	polynomial	3me.	

TAROT 2016

Summary:	using	a	single	tester	

•  For	(determinis3c)	FSM	specifica3on	M:	
– We	can	efficiently	decide	whether	an	observa3on	
is	allowed	by	M	(the	Oracle	Problem).	

– We	can	efficiently	produce	tests	to	reach	states	or	
dis3nguish	states.	

– We	can	efficiently	decide	whether	an	FSM	N	
conforms	to	M.	

– We	can	generate	an	m-complete	test	suite	for	M.	

TAROT 2016

Distributed	Tes3ng	

TAROT 2016

The	Architecture	

TAROT 2016

 SUT

Tester 2

Tester 1

Tester 3

Distributed	tes3ng	

•  We	have:	
– An	SUT	that	interacts	with	its	environment	at	
physically	distributed	interfaces	(ports).	

– A	tester	at	each	port.	

•  Will	focus	on	the	case	where:	
–  The	testers	do	not	interact	with	one	another	during	
tes3ng	and	there	is	no	global	clock.	

–  The	testers	log	their	observa3ons	and	logs	are	
combined	a^er	tes3ng.	

TAROT 2016

Consequences	

•  Each	tester	observes	only	the	sequence	of	
interac3ons	(local	trace)	at	its	port	

•  The	tester	at	port	1	observes	x1y1x1y1	and	the	tester	
at	port	2	observes	y2	only.	

TAROT 2016

Tester 1 SUT Tester 2
x1

x1

y1
y2

y1

What	the	testers	observe	

•  Given	global	trace	z,	the	tester	at	p	observes	a	
local	trace	πp(z).	

TAROT 2016

Tester 1 Tester 2
x1

x1

y1
y2

y1

Controllability	problems	

•  This	test	has	a	controllability	problem:	
introduces	nondeterminism	into	tes3ng.	

TAROT 2016

tester SUT tester

Observability	problems	

•  The	following	look	the	same	

•  Testers/users	cannot	‘map’	output	to	input	

TAROT 2016

tester Spec tester tester SUT tester

x1 x1

x1 x1

y1

y1

y1

y1

y2

y2

Equivalent	global	traces	

•  Since	we	only	observe	local	traces:	
– Global	traces	z	and	z’	are	indis3nguishable	if	their	
projec3ons	are	iden3cal:	the	local	traces	are	the	
same.	We	denote	this:	z∼z’	

•  The	following	are	equivalent	under	∼	
x1/(y1,y2)x1/(y1,-)	
x1/(y1,-)x1/(y1,	y2)	

•  Both	have	x1y1x1y1	at	port	1	and	y2	at	2.	

TAROT 2016

z � z0 ⇥ ⌅p ⇤ P.�p(z) = �p(z0)

A	simple	output	fault	

•  Input	x1	detects	the	fault.		
	

TAROT 2016

tester SUT tester tester Spec tester

x1 x1

y1
y1

y2

Test	effec3veness	is	not	monotonic	

•  However:	x1x1	does	not	detect	the	fault.		
	

TAROT 2016

tester SUT tester tester Spec tester

x1 x1

x1 x1

y1

y1

y1

y1

y2

y2

Using	an	external	network	

•  Some-mes	we	can	overcome	controllability	
and	observability	problems.	

TAROT 2016

tester SUT tester tester SUT tester

Distributed	Tes3ng	and	
Determinis3c	Finite	State	Machines	

TAROT 2016

An	allowed	behaviour	

•  Given	specifica3on	M,	a	trace					is	allowed	if		

TAROT 2016

9�0 2 L(M).�0 ⇠ �

�

An	implementa3on	rela3on	for	
distributed	systems	

•  We	say	that	FSM	N	conforms	to	FSM	M	if:	

–  Every	global	trace	of	N	is	indis3nguishable	from	a	global	
trace	of	M.	

TAROT 2016

8� 2 L(N)9�0 2 L(M).�0 ⇠ �

The	language	defined	by	an	FSM	

•  With	distributed	observa3ons,	this	is:	

•  So,	a	behaviour	is	correct	if	

•  N	conforms	to	M	if	and	only	if	

TAROT 2016

L(M) = {�0|⇤� ⇥ L(M).�0 � �}

L(N) � L(M)

� 2 L(M)

The	language	need	not	be	regular	

•  The	following	‘cheats’	–	does	not	have	any	
inputs.		

•  Clearly,											is	not	regular.	

TAROT 2016

s1 s2

(y,-)

(-, y’)

L(M)

The	language	need	not	be	regular	

•  Following	shows	this	(take	the	intersec3on	
with).	

TAROT 2016

s1 s2

s3

x2/(y’1, y’2)

x1/(-,-)

x2/(-, -)

s4

x1/(y’1, y’2)
x2/(y’1, y’2)

x1/(y1, y2)

x1/(y1, y2)

x2/(y1, y2)

{x⇤
1}{x⇤

2}

The	Oracle	Problem	in	Distributed	
Tes3ng		

•  We	observe	projec3ons	

•  We	want	to	know	whether	the	following	holds:	

•  Essen3ally,	a	membership	problem.	

•  It	is	decidable,	since	we	could:	
–  Form	all	interleavings	of	the	projec3ons.	
–  For	each	such	global	trace,	determine	whether	the	global	trace	is	allowed	by	

the	specifica3on.	
•  This	leads	to	a	combinatorial	explosion.	

TAROT 2016

�1, . . . ,�m

�1 . . .�m � L(M)

9� 2 L(M).8p 2 P.⇡p(�) = �p

Solving	the	Oracle	Problem	

•  We	observe	projec3ons	
•  We	can	form	a	finite	automata	whose	
language	is	the	set	of	corresponding	global	
traces	(the	oracle	problem	is	then	FA	
intersec3on).	

•  A	state	is	a	vector	whose	ith	component	is	the	
latest	event	from	

TAROT 2016

�1, . . . ,�m

�i

Example	

•  Two	ports,	local	traces	aa’,	b.	

TAROT 2016

a, ✏ a //

b

✏✏

aa0, ✏

b

✏✏

✏, ✏

a

>>

b

a, b
a0

// aa0, b

✏, b

a

OO

How	this	works	(1)	

•  We	define	a	par3al	order	<	on	events	in					:	a	<	a’	if	
(from	the	observa3ons)	we	know	that	a	must	have	
been	before	a’.	

•  In	this	case:	
–  Two	events	are	related	iff	they	are	at	the	same	port.	

•  Important	property:	
–  For	a	to	occur	we	must	have	all	events	before	a	(under	<).	
–  Downwardly	closed	sets	correspond	to	sets	of	events	that	
can	form	a	prefix	of	a	trace	equivalent	to					.	

•  Note	–	label	events	to	make	them	unique	if	required.	

TAROT 2016

�

�

How	this	works	(2)	

•  We	can	also	construct	the	FA	as:	
– States	are	downwardly	closed	sets	of	event.	
–  {}	is	the	ini3al	state	
– The	complete	set	of	events	is	the	final	state.	
– There	is	a	transi3on	from	set	E	to	set	E’	with	event	
e	iff	{e}	=	E’	\	E.	

TAROT 2016

•  The	number	of	states	of	the	FA	is	the	product	
of	the	lengths	of	the							(plus	1)	

•  So,	exponen3al	space	is	required.	

•  However,	polynomial	3me	if	m	is	bounded	
above.		

TAROT 2016

�i

Results	
•  For	single	port:	Oracle	Problem	can	be	solved	in	low	order	

polynomial	3me.	

•  For	DFSMs	in	distributed	tes3ng:	
•  Can	be	solved	in	polynomial	3me	for	controllable	test	
sequences;	otherwise	NP-complete.	

•  For	NFSMs:	
•  NP-complete	even	for	controllable	tes3ng.	

•  However,	problems	become	polynomial	if	we	place	bounds	
on	the	number	of	ports.	

TAROT 2016

Dis3nguishing	states	and	FSMs	

•  Let	us	suppose	that:	
– M	is	the	specifica3on	
– N	models	a	poten3al	(and	possibly	faulty)	
implementa3on	

•  We	want	to	know	whether	N	conforms	to	M.	
•  Equivalently,	we	want	to	know	whether	two	
states	can	be	dis3nguished.	

TAROT 2016

Independent	testers	

TAROT 2016

 SUT

Tester 2

Tester 1

Tester 3

•  We	have	separate,	independent,	testers.	

•  At	any	point:	
– The	FSM	being	tested	has	a	current	state.	
– Each	local	tester	has	observed	a	local	trace.	

•  There	are	infinitely	many	possible	
combina3ons	of	the	above.	

TAROT 2016

Single	port	systems	

•  We	can	represent	this	as	a	two	player	game	
problem.	
– The	state	of	the	game	is	a	pair	of	states	
(specifica3on,	implementa3on).	

– Tester	moves:	apply	input	
– System	moves:	change	state	and	return	output.	

•  One	player	(the	tester)	wants	to	force	the	
observa3on	of	a	failure.	

TAROT 2016

Dis3nguishing	FSMs:	result	

•  Similar	to	a	mul3-player	game	problem.	

•  It	is	undecidable	whether	N	conforms	to	M	
(and	so	also	whether	N	is	faulty).	

•  Consequence:	there	is	no	general	algorithm	
for	genera3ng	finite	m-complete	test	suites	
for	distributed	tes3ng.	

TAROT 2016

Controllable	tes3ng	

TAROT 2016

This	is	not	controllable	

TAROT 2016

tester SUT tester

Examples	of	controllability	

•  Two	controllable	scenarios	

TAROT 2016

tester Spec tester tester Spec tester

x x

x

x’

What	makes	an	input	sequence	
controllable?	

•  In	controllable	tes3ng:	
– We	can	follow	the	input	of	x	in	state	s	by	input	x’	
if:	

•  x	and	x’	are	at	the	same	port;	or	
•  input	x’	is	at	a	port	p	that	receives	output	in	response	
to	x.	

– The	first	case	relies	on	the	atomicity	of	input/
output	pairs.	

TAROT 2016

Dis3nguishing	states	s	and	s’	

•  If	we	restrict	to	controllable	tes3ng	we	need:	
–  (input	sequence)	x	causes	no	controllability	problems	from	
s	and	s’.	

–  x	leads	to	different	sequences	of	interac3ons,	for	s	and	s’,	
at	some	port.	

•  We	say	that	x	locally	s-dis-nguishes	s	and	s’.	
•  If	no	input	sequence	locally	dis3nguishes	s	and	s’	
they	are	locally	s-equivalent.	

TAROT 2016

Tes3ng	is	weaker	
– We	cannot	locally	s-dis3nguish	s1	and	s4	but	
x1x2	can	dis3nguish	them.	

TAROT 2016

s1 s2

s4 s3

x1/(y1,-)

x1/(y1,-)

x1/(y1,-)

x1/(y1,-)

x2/(-, y2)

x2/(-, y2)

x2/(y1, y2) x2/(y1,-)

Dis3nguishing	two	states	

•  Given	port	p	and	states	s1	and	s2	of	a	k-port	FSM	M	
with	n	states:	

–  s1	and	s2	are	locally	s-dis3nguishable	by	an	input	sequence	
star3ng	at	p	if	and	only	if	they	are	locally	s-dis3nguished	
by	some	such	input	sequence	of	length	at	most	k(n-1).	

•  This	bound	is	3ght.	
•  The	sequences	can	be	found	in	low-order	polynomial	
3me.	

TAROT 2016

Complete	tes3ng	

•  We	know	that:	
– There	is	no	general	algorithm	for	compu3ng	m-
complete	test	suites.	

– There	are	benefits	to	using	controllable	test	
sequences.	

•  We	might:	
– Try	to	achieve	‘as	much	as	possible’	given	that	
tes3ng	is	controllable.	

TAROT 2016

c(m)-complete	test	suites	

•  Given	FSM	M	we	say	that	test	suite	T	is	c(m)-
complete	if:	
– All	test	sequences	in	T	are	controllable.	
– For	every	FSM	N	with	the	same	input/output	
alphabets	as	M	and	at	most	m	states:	

•  If	N	and	M	are	locally	s-dis3nguishable	then	some	test	
sequence	in	T	achieves	this.	

•  i.e.	T	dis3nguishes	between	M	and	an	SUT	
with	at	most	m	states	if	this	is	possible	in	
controllable	distributed	tes-ng.	

TAROT 2016

Genera3ng	c(m)-complete	test	
suites	

TAROT 2016

Restric3ng	aDen3on	to	controllable	
test	sequences	

•  We	would	like	to	represent	the	set	of	
controllable	test	sequences.	

•  We	will	use	a	par3al	FSM	to	do	this.	

TAROT 2016

Copies	of	states	

•  Let	us	suppose	that:	
–  t	is	the	transi3on	(s’,s,x/y).	
–  P	is	the	set	of	ports	involved	(p	is	in	P	if	x	is	at	p	and/
or	y	contains	output	at	p).	

•  We	will	represent	the	situa3on	‘a^er	t’	by	state:	
sP	

•  The	state	sP	denotes	the	situa3on	in	which:	
–  The	FSM	is	in	state	s	and	can	receive	input	at	any	port	
in	P	in	controllable	tes3ng.	

TAROT 2016

Transi3ons	leaving	a	‘new	state’	

•  Let	us	suppose	that:	
–  t	is	the	transi3on	(s,s’,x/y).	

•  We	will	include	a	copy	of	t	from	every	state	of	the	
form	sP	such	that:	
•  Input	x	is	at	a	port	in	P.	

– We	also	include	an	ini3al	state	(ini3al	state	of	
M,	input	at	any	port).	

–  The	combina3on	defines	the	FSM	Mmin	

TAROT 2016

s0
x1/(�,y2)

//

x2/(�,y2)

✏✏

s1

x1/(y1,�)

��

x2/(y1,y2)

✏✏

s3

x2/(y1,y2)

HH x1/(�,y2)
// s2

x2/(�,y2)

HH

x1/(y1,y2)

``

1

TAROT 2016

s{1,2}0

x1/(�,y2)
//

x2/(�,y2)

✏✏

s{1,2}1

x2/(y1,y2)

✏✏

x1/(y1,�)
//s{1}1

x1/(y1,�)

⇧⇧

s{2}3

x2/(y1,y2)

!!

s{1,2}2

x1/(y1,y2)

aa

x2/(�,y2)
//s{2}2

x2/(�,y2)

⇧⇧

s{1,2}3

x2/(y1,y2)

EE

x1/(�,y2)

OO

2

TAROT 2016

Results	

•  A	path	in	M	with	label				is	controllable	if	and	
only	if	Mmin	has	a	path	with	label				.	

•  So:	Mmin	captures	‘controllable	tes3ng’		

TAROT 2016

�
�

Canonical	FSMs	

•  Given	FSM	M,	we	can	find:	
	

– Minimal	Mmin	that	is	locally	s-equivalent	to	M.	

– Maximal	(nondeterminis3c)	Mmax	that	is	locally	s-
equivalent	to	M	(adding	‘chaos	state’	to	complete	
Mmin).	

•  We	can	find	them	efficiently.	

TAROT 2016

Relevance	of	max	and	min	machines	

•  Machine	Mmin	captures	all	of	the	traces	that	
FSM	N	has	to	implement	to	conform	to	M	
(under	s-equivalence).	

•  Machine	Mmax	contains	all	of	the	traces	that	
an	SUT	can	have	without	being	dis3nguishable	
from	M	in	controllable	tes3ng:	
– We	can	examine	Mmax	to	determine	whether	it	is	
acceptable	to	restrict	aDen3on	to	controllable	
test	cases.	

TAROT 2016

Reaching	states	

•  State	s	of	M	is	reachable	in	controllable	
tes3ng	if	and	only	if:	
– There	is	some	P	such	that	sP	is	reachable	in	Mmin	

•  Decidable	in	polynomial	3me.	

TAROT 2016

Dis3nguishing	states	

•  We	have	that								and						are	dis3nguishable	in	
controllable	tes3ng	if	and	only	if:	
– There	is	a	port																									and	input	sequence	x	
star3ng	at					such	that	x	s-dis3nguishes						and						.	

•  Decidable	in	polynomial	3me.	

TAROT 2016

p 2 P \ P 0

sP
0

2sP1

s1 s2p

Comparing	FSMs	

•  FSM	N	is	locally	s-equivalent	to	FSM	M	if	and	
only	if	Nmin	is	equivalent	to	Mmin.	

•  FSM	N	is	locally	s-equivalent	to	FSM	M	if	and	
only	if	N	is	a	reduc3on	of	Mmax.	

•  Both	decidable	in	polynomial	3me.	

TAROT 2016

Refinement	and	Tes3ng	

TAROT 2016

FSM M

Implementation N

FSM Mmax

s-equivalence reduction

Genera3ng	a	c(m)-complete	test	suite	

•  It	is	now	straighmorward:	
– We	generate	an	m-complete	test	suite	from	
par3al	FSM	Mmin.	

•  or	
– We	generate	an	m-complete	test	suite	from	
nondeterminis3c	FSM	Mmax.	

•  There	are	standard	algorithms	that	can	be	
adapted	(e.g.	using	state	coun3ng).	

TAROT 2016

Efficiency	issue	

•  Many	test	genera3on	methods	use:	
– Sets	of	pairwise	dis3nguishable	states.	

•  Size	of	test	suite	depends	on	how	large	these	
are.	

TAROT 2016

Graphs	and	cliques	

•  Given	an	undirected	graph	G=(V,E)	we	can	
generate	an	FSM	M	as	follows:	
– Each	vertex	vi	in	V	is	represented	by	a	
corresponding	state	si	of	M.	

– We	can	dis3nguish	states	si	and	sj	if	and	only	if	
there	is	an	edge	between	vi	and	vj.	

•  Consequence:	
– Finding	a	maximal	set	of	pairwise	dis3nguishable	
states	of	M	is	equivalent	to	finding	a	maximal	
clique	of	G.	

TAROT 2016

Consequence	

•  The	problem	of	finding	largest	sets	of	pairwise	
dis3nguishable	states	is	NP-hard.	

•  There	are	poten3al	efficiency	issues.	
•  Note:	

– This	result	also	holds	for	single-port	tes3ng	from	a	
nondeterminis3c	FSM	or	a	par3al	FSM.	

TAROT 2016

Some	papers	(FSMs)	
	
–  B.	Sarikara	and	G.	Von	Bochmann,	Synthesis	and	Specifica3on	Issues	in	Protocol	

Tes3ng,	IEEE	Transac-ons	on	Communica-ons,	32	4,	pp.	389-395:	1984.	
–  R.	Dssouli	and	G.	von	Bochmann.	Error	detec3on	with	mul3ple	observers,	Protocol	

Specifica-on,	Tes-ng	and	Verifica-on	V,	pp.	483-494:	1985.	
–  R.	Dssouli	and	G.	von	Bochmann,.	Conformance	tes3ng	with	mul3ple	observers,	

Protocol	Specifica-on,	Tes-ng	and	Verifica-on	VI,	pp.	217-229:	1986.	

–  R.	M.	Hierons	and	H.	Ural.	The	effect	of	the	distributed	test	architecture	on	the	
power	of	tes3ng,	The	Computer	Journal,	51	4,	pp.	497-510:	2008.		

–  R.	M.	Hierons:	Canonical	Finite	State	Machines	for	Distributed	Systems,	Theore-cal	
Computer	Science,	411	2,	pp.	566-580:	2010.		

–  R.	M.	Hierons:	Verifying	and	Comparing	Finite	State	Machines	for	Systems	that	
have	Distributed	Interfaces,	IEEE	Transac-ons	on	Computers,	62	8,	pp.	1673-1683,	
2013.		

–  R.	M.	Hierons:	Oracles	for	Distributed	Tes3ng,	IEEE	Transac-ons	on	SoMware	
Engineering,	38	3,	pp.	629-641,	2012.	

–  R.	M.	Hierons:	Genera3ng	Complete	Controllable	Test	Suites	for	Distributed	
Tes3ng,	IEEE	Transac-ons	on	SoMware	Engineering,	41	3,	pp.	279-293	,	2015.	

–  R.	M.	Hierons	and	Uraz	C.	Turker:	Dis3nguishing	Sequences	for	Distributed	Tes3ng:	
Adap3ve	Dis3nguishing	Sequences,	The	Computer	Journal	(to	appear).	

TAROT 2016

Thanks	

•  Many	people	have	contributed	through	
discussions	and	collabora3on,	including:	
– Ana	Cavalcan3,	Haitao	Dan,	Christophe	Gaston,	
Marie-Claude	Gaudel,	Pascale	Le	Gall,	Mercedes	
Merayo,	Manuel	Nunez,	Uraz	Turker,	Hasan	Ural,	
Husnu	Yenigun.	

•  The	work	was	par3ally	funded	by	the	EU	
under	the	TAROT	network.	

TAROT 2016

Conclusions	

•  If	a	system	has	distributed	interfaces/ports	
then	we	have	different	implementa3on	
rela3ons.	

•  This	can	affect	tes3ng	and	also	development.	
•  We	have	new	no3ons	of	correctness	and	
corresponding	test	genera3on	algorithms.	

•  Restric3ng	aDen3on	to	controllable	test	
sequences	brings	prac3cal	benefits.	

	
TAROT 2016

Ques3ons?	

TAROT 2016

