Introduction

Generation Methods

Sufficient Conditions

Generating Checking Sequences: When Reseting is
not an Option

Adenilso Simao - USP - Brazil

adenilso@icmc.usp.br

Departamento de Sistemas de Computacao
Instituto de Ciéncias Matematicas e de Computacéo

Universidade de Sao Paulo

TAROT - Paris - France - 2016-07-04
=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br
adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

-Agenda

» Goals
» To present the main concept of checking sequence generation
» To present recent methods

» To demonstrate why those methods work
» To point future research

» Public
» Newcomers to the area
> Intuition over formulae
» New PhD students

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods
sModel Based Testing

Sufficient Conditions

Conclusion

» Test Generation is Always Model-Based

> Implicit models

> System Understanding
» Explicit models

> Diagrams

> State Machines

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods
«State Machines

Sufficient Conditions

Conclusion

» Simplest explicit models
> Vanilla models

» Understandable for non-experts
» Semantic is the model itself

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions
sFinite State Machine

Conclusion

» It can be seen as

» A regular language over pairs of input and outputs

» A function from inputs sequences to output sequences

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

s 1est from State Machines

» Given a specification FSM
» Given an implementation
» As a black-box
» Only output sequences (in response to input sequences) are
observable
> |s the implementation correct?

» Does it behave accordingly?
» Does it represent the same function?

> Or an equivalent one (in some sense)?

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

;Test from State Machines (II)

Conclusion

» Is it even possible to answer that?
> A failed test is a negative answer
» For a positive answer

» Is afinite test enough?

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
S P A e MMS
s 1esting Hypothesis

» Enter testing hypothesis

» Without assumptions, the problem is unsolvable
» With too many assumptions, the problem is trivial
» With the right assumptions, the problem is interesting

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions Conclusion
S P A e MMS
sTesting Hypothesis (II)

» Modelling assumption

» The implementation can be modelled as an (unknown) FSM
> Big assumption

> Reduces the complexity of knowing how to test
» Input Compatibility

» The implementation accepts the same inputs as the specification

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
S P A e MMS
w1esting Hypothesis (l11)
» Boundness

FSM

» There is a known upper bound on the number of state in the unknown
> This is the most disputable one!
» Determinism

» Always the same answer to a given input sequence
> Verifiable in the specification

> Assumed in the implementation

=] =) = = = NS
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
S P A e MMS
1Checking experiments

» A set of input sequences (with corresponding output sequences)
which identify uniquely the specification

» Resets are used to bring the specification and the implementation the
initial state

» Itis assumed to be reliable in the implementation
> Yet another assumption

o = = - = v
.S S
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions Conclusion
.S S
»Checking experiments

» Generation Methods
» W1
> Wp2
» HSIB

T. S. Chow. “Testing Software Design Modeled by Finite-State-Machines”. In: IEEE
Transactions on Software Engineering 4.3 (May 1978), pp. 178—186.

2Susumu Fujiwara et al. “Test Selection Based on Finite State Models”. In: [EEE Trans.
Software Eng. 17.6 (1991), pp. 591-6083.

3N. Yevtushenko and A. Petrenko. “Synthesis of test experiments in some classes of
automata”. In: Automatic Control and Computer Sciences 24.4 (1990), pp, 50=55.

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

sChecking experiments (II)

» Generation Methods
> H*
» SPY®

4Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. “An Improved Conformance
Testing Method”. In: Formal Techniques for Networked and Distributed Systems - FORTE
2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5, 2005,
Proceedings. 2005, pp. 204—218.

5 Adenilso Simao, Alexandre Petrenko, and Nina Yevtushenko. “Generating Reduced
Tests for FSMs with Extra States”. n: Testing of Software and Communication Systems,
21st IFIP WG 6.1 International Conference, TESTCOM 2009 and 9th International
Workshop, FATES 2009, Eindhoven, The Netherlands, November 2-4, 2009. Proceedings.
2009, pp. 129-145. . - _ _ - e

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
«Checking experiments (lll)

» Test Cases from HSI Method

> {2000, XXYX, XXYY , XYXXY , XYXY s XYYX, XYYy, yX }
> Length 39

» Test Cases from SPY Method

> Length 32

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

> { X000 XXYX, XYXXYY XYXYYY , XYYX, yX }

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
sChecking sequence

» A checking experiment with a single input sequence
> No resets required

» Strongly connected

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods
sGeneration Methods

Sufficient Conditions

Conclusion

» Assume the FSM

» Assume the implementation can be modeled as an FSM with same
input alphabet and at most 4 states

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

+Generation Methods (ll)

Conclusion

» Consider the input sequence

> Why?

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

> O = yXYXYXYYXYXXYXYXXYYXYYXyyyXx
» It is a checking sequence

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

«Generation Methods (I11)

» Consider the input sequence

> O = YXYXYXYYXyXXyXYXXYyXyyxyyyx

> Length 27

» The output sequence is

» u=100101001101111011111100011
» There is only one (out of more than 16 millions) FSM with at most 4

states, which answer ® with u
» There are possible renamed FSMs
O

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

w«Generation Methods (V)

» Consider the input sequence
> (l)/:
XYYYXXXYXYXXYXYXXXYXXYXYYXYYXYYXYYXYXYYYYXYYXXYYXXYYXXYYXX
> Length 58
» The output sequence is
>y =
0001101111011110111011111000111000110001111101111000100010
=] =) = = = DA

S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

»@Generation Methods (V)

» Consider the input sequence
> ® =

XYYYXXXYXYXXYXYXXXYXXYXYYXYYXYYXYYXYXYYYYXYYXXYYXXYYXXYYXX
» The output sequence is
> ,u/ =
0001101111011110111011111000111000110001111101111000100010

S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
- Checking Sequence

» What is a checking sequence after all
» Given a specification FSM

> An input sequence (with the respective output sequence) which
candidate FSMs
» The candidate FSMs

identifies uniquely (up to isomorphism) this FSM among a set of
» The fault domain

» Set of FSMs with at most as many states as the specification FSM

O) = = = va >
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

~Using a Checking Sequence

v

Given a checking sequence

v

Given a black-box implementation
» Assuming the implementation can be modeled by an FSM from the
fault domain

If the implementation passes the test (i.e., it produces the expected
output)
» The implementation is correct

v

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

=@Generating Checking Sequences

» Long tradition
» Moore, 1958°

> The seminal paper

> The problem is set here

8Edward F. Moore. “Gedanken-Experiments on Sequential Machines”. In: J. Symbolic
Logic 23.1 (1958). . - _ _ - e
.S S
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

~Generating Checking Sequences (II)

» Long tradition

» Hennie, 19657

> Generating checking sequences

> The method is quite good, but not very algorithmic

7F. C. Hennie. “Fault-detecting experiments for sequential circuits”. In: Proceedings of
Fifth Annual Symposium on Circuit Theory and Logical Design, 1965, pp-95-110. - .
e, _, , ll_l_
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

=Generating Checking Sequences (lll)

Conclusion

» Long tradition
» Gonenc, 19708

> An algorithmic method
> Let us have a look

8G. Gonenc. “A method for the design of fault detection experiments”. In: IEEE
Transactions on Computers 19 (1970), pp. 551-558. . 5 _ _ : vao
L _ __ _ _ __ _ __ _ __ _ _ _ _ __ __ —__ _ _ _ __
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

»Distinguishing States

» A way to distinguish all states of the FSMs®
» Distinguishing Sequence
> Preset
> An input sequence
» Adaptive
> An decision tree (nodes are inputs, edges are outputs)
» Distinguishing Set
» A preset set of sequences, which common prefixes
» Equivalent to an Adaptive Distinguishing Sequence

®David Lee and Mihalis Yannakakis. “Testing Finite-State Machines: State Identification

and Verification”. In: IEEE Trans. Computers 43.3 (1994), pp. 306=320.
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods

Sufficient Conditions

~Distinguishing States (II)

» Preset Distinguishing Sequence
> Xg = yxy

» State 1 answers with 100
» State 2 answers with 010

» State 3 answers with 111
» State 4 answers with 011

=) =)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

»Distinguishing States (lII)

» Insights

» Xy can be used to identify a unknown state of the machine
» Xy can be used to confirm that the machine is in a given state
» If Xy is applied to every state of the specification and the
implementation
» If the implementation answers as the specification
> Then, the implementation has at least 4 states
> Xgy is a preset distinguishing sequence for the implementation

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
=Distinguishing States (V)

» Insights

of Xy

» XyXy can be used to confirm the state reached by the first application
» If Xy Xy is applied in each state

> Then, we can identify which state the implementation is in

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
wDistinguishing States (V)

> Insights

» For a given transition from a (known) state with a given input

> Xy can be used to confirm that the reached state is correct

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

sGenerating a Checking Sequence

> Ol-sequences

» Recognizing states
» [-sequences

» Confirming transitions
» T-sequences (transfer sequences)

» Bridging from one state to another
» Gluing the sequences

> Avoiding circularity in the assumptions

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

»Generating a Checking Sequence (ll)

Conclusion

» Consider the sequence

> XgXgXg = yxyyxyyxy from state 1
» with outputs y.1 x.0 y.0 y.0 x.1y.1y.1 x.0y.0

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

=Generating a Checking Sequence (lll)

Conclusion

» Consider the sequence

> XgXgXg = yxyyxyyxy from state 1

» with outputs [1]y.1 x.0 y.0 [4]y.0 x.1 y.1 [1]y.1 x.0 y.0

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

«@Generating a Checking Sequence (1V)

» Consider the sequence

> XgXgXyg = yxyyxyyxy from state 1

> with outputs [1]y.1 x.0 y.0 [4]y.0 x.1 y.1 [1]y.1 x.0 y.0 (4)
» This is a a-sequence (1, Xy Xy Xy)

=) =)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

=@Generating a Checking Sequence (V)

Conclusion

» Consider the sequence

> XygXyg = yxyyxy from state 2

> with outputs [2] y.0 x.1 y.0 [4] y.0 x.1y.1 (4)
» This is another a-sequence (2, Xy Xy)

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

s«Generating a Checking Sequence (VI)

Conclusion

» Consider the sequence

> XygXyg = yxyyxy from state 3

> with outputs [3] y.1 x.1y.1 [1] y.1 x.0 y.0 (4)
» This is another ai-sequence

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

~Generating a Checking Sequence (VII)

Conclusion

» The alpha set is the set of a-sequences, marked with the respective
starting states

» There are three (1, XgXgXy), (2, XgXq), (3, XaXq)

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

w@Generating a Checking Sequence (VIII)

Conclusion

» The B-sequences are generated per transition
» Consider the transition (1, x)

> The corresponding B-sequence is xXg = (1)x.0[2]y.0x.1y.0(4)
> Actually (1,xXqg)

» There are, then, eight B-sequences, one for each transitions

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

w@Generating a Checking Sequence (1X)

Conclusion

» Testing fragments

» (1, XaXaXd,4), (2,XgXd,4), (3, X4 Xa,4)

> (13XXd74)= (1ade74)s (21XXd31)= (27de71)5 (37XXda4)= (37de71)5
(4aXXda4)a (47de71)

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

«@Generating a Checking Sequence (X)

Conclusion

» Gluing them

» Using transfer sequences (T-sequences) if needed
> Avoid circularity

> (1,XdXdXd,4) (4,X,2) (Q,XdXd,4) (4,}/,3) (3,XdXd,4) (4,XXd,4)

(4,yXq,1) (1,¥Xq,4) (4,x,2) (2,xXg,1) (1,XXq,4) (4,%,2)
(2ade71) (1 ’XX"?’) (37XXd)4) (47}/,3) (37de,1)
o) Fr <= (2P = DAL

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

~Generating a Checking Sequence (XI)

Conclusion

» Extracting the checking sequence

> YXYYXYYXYXYXYYXYYYXYYXYXYXYYYXYYYXYXXYXYXYXYXYYXYXXXYXYYYYXY
> Length 60

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

> Xg Xag XaxXgXayXaXaxXayXayXaxxXgxXqaxyXaxxxXqyyXq

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

~@Generating a Checking Sequence (XII)

» Optimizing T-sequences'®
» Generating a graph with -, B- and (sort of) T-sequences
» Find the shortest sequence with all - and B-sequences

> T-sequences are optional
» Rural Chinese Postman Problem (RCPP)'"

> In the best scenario, no T-sequences.
> The shortest possible with this approach is of length 53

10H. Ural, X. Wu, and F. Zhang. “On minimizing the lengths of checking sequences”. In:
IEEE Transactions on Computers 46.1 (1997), pp. 93-99.

"R. M. Hierons and H. Ural. “Optimizing the length of checking sequences”. In: IEEE
Transactions on Computers 55.5 (2006), pp. 618-629.

S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

sLocal Optimization Method

» Greedy approach'?
» Until all transitions are verified
» (Case 1) the current state is not recognized
> Apply the distinguishing sequence for that state

> (Case 2) the current state is recognized and there is a non-verified
input at the end state

> Apply the input plus the distinguishing sequence
> (Case 3) the current state is recognized and all inputs are verified at
the end state
> Transfer to a state with non-verified input, using only verified transitions

2 Adenilso Simao and Alexandre Petrenko. “Generating Checking Sequences for Partial
Reduced Finite State Machines”. In: Testing of Software and Communicating Systems,
20th IFIP TC 6/WG 6.1 International Conference, TestCom 2008, 8th International
Workshop, FATES 2008, Tokyo, Japan, June 10-13, 2008, Proceedings. 2008,

pp. 153-168.
e

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

«Local Optimization Method (lI)

» Insights

» Sometimes it is possible to use shorter sequence to distinguish
> Asin'®

» Sometimes a transition is verified indirectly
> Asin'

8Hasan Ural and Fan Zhang. “Reducing the Lengths of Checking Sequences by
Overlapping”. In: Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International
Conference, TestCom 2006, New York, NY, USA, May 16-18, 2006, Proceedings. 2006,
pp. 274-288.

14 Jessica Chen et al. “Eliminating Redundant Tests in a Checking Sequence”. In:
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference,

TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings. 2005,
pp. 146—158.

o) <5 = = _9ac
e e

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions
sLocal Optimization Method (l11)

Conclusion

>

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

sLocal Optimization Method (1V)

Conclusion

x/0
» We start applying Xy

» 0= [1]y.1x.0
» We apply Xy again

» o=[1]y.1x.0[2]y.0x.1y.0
» The fragment (1, yx,2) is verified

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions
~Local Optimization Method (V)

Conclusion

/1
Xy

» o= [1]y.1x.0[2]y.0x.1[2]y.0x.1y.0
» The fragment (2, yx,2) is verified
» Then

> o= [1]y.1x.0[2]y.0x.1[2]y.0x.1[2]y.0
=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

/0
» We apply Xy again, but using the fact that a suffix of ® is a prefix of

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

sLocal Optimization Method (VI)

10

» We apply Xy again

» This time, there is no point in reusing the suffix

» o= [1]y.1x.0[2]y.0x.1[2]y.0x.1[2]y.0[4]y.0x.1y.1

» The fragment (2, y,4) is verified
> Itis the transition (2,y)

» As fragments (2, yx,2) and (2,y,4) are verified, so is (4, x,2)
> Another transition is verified: (4, x)

» o= [1]y.1x.0[2]y.0(4)x.1[2]y.0(4)x.1[2]y.0[4]y.0x.1y.1

S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions
«Local Optimization Method (VII)

Conclusion

» We apply Xy again

» o= [1]y.1x.0[2]...[4]y.0x.1[1]y.1x.0[2]
> Since (1,yx,2) is verified

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions
sLocal Optimization Method (VIII)

Conclusion

» There is an unverified transition in state 2, name (2, x)
» Then, apply input x, followed by the Xy

» o= [1]y.1x.0[2]...[4]y.0x.1[1]y.1x.0[2] x.1[3]y.1x.1
» The fragment (2, x, 3) is verified
> Transition (2, x) is verified

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

s:.Local Optimization Method (1X)

Conclusion

» We apply Xy

> Since (1, yx,2) is verified

» o=[1]y.1x.0[2]...[2]x.1[3]y.1x.1[1]y.1x.0[2]
» The fragment (3, yx, 1) is verified

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

=Local Optimization Method (X)

Conclusion

» There is no unverified transition from state 2
» Transfer to a state where there is

> Using only verified transitions

» o=[1]y.1x.0[2]...[1]y.1x.0[2]x.1[3]
> Since (2, x,3) is verified

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions
ssLocal Optimization Method (XI)

Conclusion

» Verify transitions either (3, x) or (3,y)
» Let us choose (3,y)

> Apply y, then Xy

» o=[1]y.1x.0[2]...[1]y.1x.0[2]x.1[3]y.1[3]y.1(3)x.1[1]
» The fragment (3, y,3) is verified
» So are transitions (3, y) and (3, x)
é
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

=Local Optimization Method (XII)

» Verify transitions either (1, x) or (1,y)
» Let us choose (1,y)

> Apply y, then Xy

» o= [1]y.1x.0[2]...[3]y-1[3]x.1[1]y.1[1]y.1(1)x.0[2]

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

Conclusion

ssLocal Optimization Method (XIII)

» There is no unverified transition from state 2
» Transfer to a state where there is

» o= [1]y.1x.0[2]...[1]y.1(1)x.0[2]y.0[4]
> Since (2,y,4) is verified

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

ssLocal Optimization Method (XIV)

» Verify transitions (4, y)

> Apply y, then Xy

» o= [1]y.1x.0[2]...[2]y.0[4]y.O[3]y.1x.1

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

~Local Optimization Method (XV)

» Length 27

> O = YXYXYXYYXYXXYXYXXYYXYYXyyyx

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

Distinguishing Set

» One sequence for each state

» For each pair of states, there exists a common prefix of both
corresponding sequences which separates them

> X =y.1x.0
» X2=y.0y.0
» X3 =y.1x.1
» X4 =y.0y.1

» Adaptive Distinguishing Sequence

O
8
I
il
it

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
ssDistinguishing Set (II)

» A shorter checking sequence (in some cases)
» In the running example

> O = YXYYYXYXXYXYYXXYYXXYXYY
» Length 23

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

oWithout Distinguishing Sequence

» A characterization set'®

» A set of sequences

» For each pair of states, there exists a sequence which separates them
» Always available for minimal machines

15T, S. Chow. “Testing Software Design Modeled by Finite-State-Machines”. In: IEEE
Transactions on Software Engineering 4.3 (May 1978), pp. 178-186. _ _ - e
S TR

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

«+Without Distinguishing Sequence (ll)

Conclusion

» The set of sequence should be applied to same state of the
implementation
» Signature

16 17

3

» How to return to the same state in the implementation?
» Locating sequence

18F. C. Hennie. “Fault-detecting experiments for sequential circuits”. In: Proceedings of

Fifth Annual Symposium on Circuit Theory and Logical Design. 1965, pp. 95-110.
17 Ali Rezaki and Hasan Ural. “Construction of checking sequences based on
characterization sets”. In: Computer Communications 18.12 (1995), pp. 911-920. o
e > > " ‘> "
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

«Without Distinguishing Sequence (lll)

Conclusion

» Characterization set

» W={xyx}
» Suppose we are at state s we suspect to be 2
> Apply yx observing 11

> It can be state 4 instead

» How to come back to s to apply x?

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

«=Without Distinguishing Sequence (1V)

» Repeating yx many times
» We do the following

> Lo =51 yX Xyy S2 yX XYy S3 YX XYY Sa YX XYy S5 YX XYy S X
> yxxyy cycles from state 2 back to state 2, in the specification

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions

Conclusion

«Without Distinguishing Sequence (V)

> Lo =Sy YX Xyy So YX XYy S3 YX XYY S4 YX XYy S5 yX XYy Se X
» As there are 4 states

> Two of the states in the set {s1, Sp, 3, S4, S5} should be the same

> Then, sg should be one of the states {s1, Sz, 3,54} for which we know
the answer for yx

> We then can infer which state it is, from the answers for yx and x

=] =) = = = NS
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

«=Without Distinguishing Sequence (VI)

> Lo = yxXyyyxxyyyxxyyyxyyyxxyy[2]x

» L, is alocating sequence for state 2
> Ly = yxxyxxyxxyxxyxx[1]x

» Ly is alocating sequence for state 1
> Lz = yxyxyxyxyx|[3]x

» L3 is alocating sequence for state 3
> Ly = yXXYyxXXyyxxyyxxyyxxy[4]x

» L, is alocating sequence for state 4

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

«Without Distinguishing Sequence (VII)

Conclusion

> Apply all locating sequences
» It should be done first

» Suppose we would like to check the end state after an input
sequence o after state 4
> Apply L T4(XyX and Lo Tyox

» T4 transfer to state 4 in the specification

=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
«Sufficient Conditions

» Why the method work

» A framework for proving correctness

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
soufficient Conditions (1)

» Confirmed Sequences

» When it is possible to be sure in which state the implementation is at
» Convergence (and Divergence)

» When it is possible to be sure that two sequences reach the same
state (or distinct states)

=] =) = = = NS
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions Conclusion
.S S
«Sufficient Conditions (111

» Consider the sequence
> XYYXYXXyXyxXyxyyyx
> Length 17
» |t is a checking sequence

» It can be proved by using the sufficient conditions

» Theorems and Lemmas in'8

8 Adenilso Simao and Alexandre Petrenko. “Checking Completeness of Tests for Finite
State Machines”. In: I[EEE Transactions on Computers 59 (2010), pp. 1023-1032. e
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»Sufficient Conditions (1V)

» Adding the outputs

> 7x07y07y07x17y17x07x17y17x17y17x07y07x17y07y07y17x17

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»Sufficient Conditions (1V)

» Adding the outputs

> 7x07y07y07x17y17x07x17y17x17y17x07y07x17y07y07y17x17

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
Sufficient Conditions (1V)
» Adding the outputs

> 7x07y07y07x17y17x07x1?7y1?7x17y1?x07y07x1?y07y07y17x17
passing the test

» Identifying 4 states which cannot be the same in any implementation

» Finding an n-clique in an n-partite graph!

=) =) = = = DAl
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

> 7x07y07y07x17y17x07x17y17x17y17x07y07x17y07y07y17x17
> NP-Complete

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»Sufficient Conditions (V)

» Marking them

> 7x0Ay0?7y07x1By17x07x1Cy17x1?7y17x0?y0?x1?y0Dy07y17x17?

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

.Sufficient Conditions (V1)

» Finding states which cannot be three of them
» 7x0Ay07y07x1By17x07x1Cy17x17y17x07y07x17y0Dy07y17x17
» Marking them with the only one it can be
> 7x0Ay07y07?x1By17x07x1Cy17x1By17x07y0?x17y0Dy07y17x17
» ?x0Ay07y07x1By17x07x1Cy17x1By17x07y07x1Ay0Dy07y17x17?
» ?x0Ay07y07x1By17x07x1Cy17x1By17x07y07x1Ay0Dy0Cy17x17

22O

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»Sufficient Conditions (VII)

» How about this state?

> 7x0Ay0?7y0?7x1By17x07x1Cy1?x1By17x07y07x1Ay0Dy0Cy17x17?
> Either Aor D

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

woufficient Conditions (VIII)

> As the implementation is deterministic, if two points are the same
state, the common suffixes lead to the same state
» ?x0Ay07y07x1By17x07x1Cy17x1By17x07y07x1Ay0Dy0Cy17x17
» ?x0Ay0Dy0Cx1By1?x0?x1Cy17x1By17x07y07x1Ay0Dy0Cy17x17
» 7x0Ay0Dy0Cx1By17x07x1Cy17x1By17x0?7y0?x1Ay0Dy0Cy17x17?

DD

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
~»Sufficient Conditions (1X)

» We now that the previous state cannot be D

» ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?7x1?
» 7x0Ay0Dy0Cx1By1?7x0?x1Cy17x1By1?x0Ay07x1Ay0Dy0Cy17x17
O il /D /0 @ /0

(=)

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»3ufficient Conditions (X)

» Common suffixes again

>

» ?x0Ay0Dy0Cx1By1?x0?x1Cy17x1By17x0Ay07x1Ay0Dy0Cy17x17?

7x0Ay0Dy0Cx1By17x07x1Cy17x1By1?x0Ay0Dx1Ay0Dy0Cy17x17?
()

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
»Sufficient Conditions (XI)

» Common suffixes again

>

>

7x0Ay0Dy0Cx1By17x07x1Cy17x1By1?x0Ay0Dx1Ay0Dy0Cy17x17?

o
OP0

Y

7x0Ay0Dy0Cx1By1?7x0Ax1Cy17x1By17x0Ay0Dx1Ay0Dy0Cy17x17?
O

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
sSufficient Conditions (XII)

» We can infer the initial state now
»

>

7x0Ay0Dy0Cx1By17x0Ax1Cy17x1By17x0Ay00Dx1Ay0Dy0Cy17x17

Bx0Ay0Dy0Cx1By1?7x0Ax1Cy1?x1By1?7x0Ay00x1Ay0Dy0Cy17x17

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
..Sufficient Conditions (XI11)

» We can also infer other states
»

Bx0Ay0Dy0Cx1By17x0Ax1Cy1?x1By1?7x0Ay0Dx1Ay0Dy0Cy17x17

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy17x1By17x0Ay00x1Ay0Dy0Cy17x17

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
-Sufficient Conditions (XIV)

» We can also infer other states
»

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy17x1By17x0Ay00x1Ay0Dy0Cy17x17

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy17x1By1Bx0Ay0Dx1Ay0Dy0Cy17x17?

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
=Sufficient Conditions (XV)

» We can also infer other states
»

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy17x1By1Bx0Ay00Dx1Ay0Dy0Cy17x17

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1Cx1By1Bx0Ay0Dx1Ay0Dy0Cy17x17

[m]

5

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
.Sufficient Conditions (XVI)
» All transitions are inferred
>

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1Cx1By1Bx0Ay0Dx1Ay0Dy0Cy17x17

[m]

=)
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
sSufficient Conditions (XVII)

» Thus, it is a checking sequence
> XYYXYXXyXyxyxyyyx

> Length 17

» It is very close to the shortest possible
> XYXYYYYYXYXXXX

> Length 14

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

sRelated work

» Extensions to the RCPP approach
» Using adaptive distinguishing sequences'®
» Avoiding verifying some transitions2°
» Allowing for overlapping?'

"®Robert M. Hierons et al. “Using adaptive distinguishing sequences in checking
sequence constructions”. In: Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008. 2008, pp. 682—687.

20 jessica Chen et al. “Eliminating Redundant Tests in a Checking Sequence”. In:
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference,
TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings. 2005,
pp. 146—158.

2"Hasan Ural and Fan Zhang. “Reducing the Lengths of Checking Sequences by
Overlapping”. In: Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International
Conference, TestCom 2006, New York, NY, USA, May 16-18, 2006, Proceedings. 20086,
pp. 274—288.

O 5 = = vaQ

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

~Related work (1l)

» Extension to greedy approach
» Using UIOs??
» Dealing with non-deterministic machines?3

22 pdenilso Simao and Alexandre Petrenko. “Checking Sequence Generation Using
State Distinguishing Subsequences”. In: Second International Conference on Software
Testing Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009,
Workshops Proceedings. 2009, pp. 48-56.

23 Alexandre Petrenko, Adenilso Simao, and Nina Yevtushenko. “Generating Checking
Sequences for Nondeterministic Finite State Machines”. In: Fifth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2012, Montreal, QC,
Canada, April 17-21, 2012. 2012, pp. 310-319.

o) <5 = = = _9ac

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction Generation Methods Sufficient Conditions Conclusion

sRelated work (1)

» Recent work

» Generating good adaptive distinguishing sequences®*
» Removing (some) repetition in Locating Sequences?®
» Combining several distinguishing sequences?®

24Uraz Cengiz Tirker, Tongug Unliiyurt, and Hiisnii Yenigiin. “Effective algorithms for
constructing minimum cost adaptive distinguishing sequences”. In: Information &
Software Technology 74 (2016), pp. 69-85.

25Guy-Vincent Jourdan, Hasan Ural, and Hiisnii Yenigiin. “Reducing locating sequences
for testing from finite state machines”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016. 2016, pp. 1654—1659.

26Canan Giinigen, Guy-Vincent Jourdan, and Hiisnii Yenigiin. “Using Multiple Adaptive
Distinguishing Sequences for Checking Sequence Generation”. In: Testing Software and
Systems - 27th IFIP WG 6.1 International Conference, ICTSS 2015, Sharjah and Dubai,
United Arab Emirates, November 23-25, 2015, Proceedings. 2015.pp. 19-34. _

Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
.S S
ssConcluding Remarks

» Checking sequence

» When reseting is not an option
» Long tradition
» Old, but gold

» Not rocket science
» Still active

=) =) = = = Al
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods Sufficient Conditions Conclusion
O
w«Concluding Remarks (1)

» Thank you! ®

=) =) = =) Q>
O
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br

Introduction

Generation Methods

Sufficient Conditions

Generating Checking Sequences: When Reseting is
not an Option

Adenilso Simao - USP - Brazil

adenilso@icmc.usp.br

Departamento de Sistemas de Computacao
Instituto de Ciéncias Matematicas e de Computacéo

Universidade de Sao Paulo

TAROT - Paris - France - 2016-07-04
=] =) = = = DA
S TR
Adenilso Siméo - USP - Brazil adenilso@icme.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br
adenilso@icmc.usp.br

	Introduction
	Generation Methods
	Sufficient Conditions
	 Conclusion

