
Introduction Generation Methods Sufficient Conditions Conclusion

Generating Checking Sequences: When Reseting is
not an Option

Adenilso Simão - USP - Brazil
adenilso@icmc.usp.br

Departamento de Sistemas de Computação
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

TAROT - Paris - France - 2016-07-04

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br
adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

2Agenda

I Goals
I To present the main concept of checking sequence generation
I To present recent methods
I To demonstrate why those methods work
I To point future research

I Public
I Newcomers to the area

I Intuition over formulae
I New PhD students

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

3Model Based Testing

I Test Generation is Always Model-Based
I Implicit models

I System Understanding
I Explicit models

I Diagrams
I State Machines

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

4State Machines

I Simplest explicit models
I Vanilla models
I Understandable for non-experts
I Semantic is the model itself

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

5Finite State Machine

I It can be seen as
I A regular language over pairs of input and outputs
I A function from inputs sequences to output sequences

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

6Test from State Machines

I Given a specification FSM
I Given an implementation

I As a black-box
I Only output sequences (in response to input sequences) are

observable
I Is the implementation correct?

I Does it behave accordingly?
I Does it represent the same function?

I Or an equivalent one (in some sense)?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

7Test from State Machines (II)

I Is it even possible to answer that?
I A failed test is a negative answer

I For a positive answer
I Is a finite test enough?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

8Testing Hypothesis

I Enter testing hypothesis
I Without assumptions, the problem is unsolvable
I With too many assumptions, the problem is trivial
I With the right assumptions, the problem is interesting

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

9Testing Hypothesis (II)

I Modelling assumption
I The implementation can be modelled as an (unknown) FSM

I Big assumption
I Reduces the complexity of knowing how to test

I Input Compatibility
I The implementation accepts the same inputs as the specification

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

10Testing Hypothesis (III)

I Boundness
I There is a known upper bound on the number of state in the unknown

FSM
I This is the most disputable one!

I Determinism
I Always the same answer to a given input sequence

I Verifiable in the specification
I Assumed in the implementation

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

11Checking experiments

I A set of input sequences (with corresponding output sequences)
which identify uniquely the specification

I Resets are used to bring the specification and the implementation the
initial state

I It is assumed to be reliable in the implementation
I Yet another assumption

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

12Checking experiments

I Generation Methods
I W1

I Wp2

I HSI3

1T. S. Chow. “Testing Software Design Modeled by Finite-State-Machines”. In: IEEE
Transactions on Software Engineering 4.3 (May 1978), pp. 178–186.

2Susumu Fujiwara et al. “Test Selection Based on Finite State Models”. In: IEEE Trans.
Software Eng. 17.6 (1991), pp. 591–603.

3N. Yevtushenko and A. Petrenko. “Synthesis of test experiments in some classes of
automata”. In: Automatic Control and Computer Sciences 24.4 (1990), pp. 50–55.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

13Checking experiments (II)

I Generation Methods
I H4

I SPY5

4Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. “An Improved Conformance
Testing Method”. In: Formal Techniques for Networked and Distributed Systems - FORTE
2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5, 2005,
Proceedings. 2005, pp. 204–218.

5Adenilso Simao, Alexandre Petrenko, and Nina Yevtushenko. “Generating Reduced
Tests for FSMs with Extra States”. In: Testing of Software and Communication Systems,
21st IFIP WG 6.1 International Conference, TESTCOM 2009 and 9th International
Workshop, FATES 2009, Eindhoven, The Netherlands, November 2-4, 2009. Proceedings.
2009, pp. 129–145.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

14Checking experiments (III)

I Test Cases from HSI Method
I {xxxx ,xxyx ,xxyy ,xyxxy ,xyxy ,xyyx ,xyyy ,yx}

I Length 39

I Test Cases from SPY Method
I {xxxx ,xxyx ,xyxxyy ,xyxyyy ,xyyx ,yx}

I Length 32

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

15Checking sequence

I A checking experiment with a single input sequence
I No resets required
I Strongly connected

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

16Generation Methods

I Assume the FSM

I Assume the implementation can be modeled as an FSM with same
input alphabet and at most 4 states

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

17Generation Methods (II)

I Consider the input sequence
I ω = yxyxyxyyxyxxyxyxxyyxyyxyyyx

I It is a checking sequence
I Why?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

18Generation Methods (III)

I Consider the input sequence
I ω = yxyxyxyyxyxxyxyxxyyxyyxyyyx

I Length 27
I The output sequence is

I µ = 100101001101111011111100011
I There is only one (out of more than 16 millions) FSM with at most 4

states, which answer ω with µ
I There are possible renamed FSMs

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

19Generation Methods (IV)

I Consider the input sequence
I ω′ =

xyyyxxxyxyxxyxyxxxyxxyxyyxyyxyyxyyxyxyyyyxyyxxyyxxyyxxyyxx
I Length 58

I The output sequence is
I µ′ =

0001101111011110111011111000111000110001111101111000100010

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

20Generation Methods (V)

I Consider the input sequence
I ω′ =

xyyyxxxyxyxxyxyxxxyxxyxyyxyyxyyxyyxyxyyyyxyyxxyyxxyyxxyyxx
I The output sequence is

I µ′ =
0001101111011110111011111000111000110001111101111000100010

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

21Checking Sequence

I What is a checking sequence after all
I Given a specification FSM

I An input sequence (with the respective output sequence) which
identifies uniquely (up to isomorphism) this FSM among a set of
candidate FSMs

I The candidate FSMs
I Set of FSMs with at most as many states as the specification FSM
I The fault domain

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

22Using a Checking Sequence

I Given a checking sequence

I Given a black-box implementation

I Assuming the implementation can be modeled by an FSM from the
fault domain

I If the implementation passes the test (i.e., it produces the expected
output)

I The implementation is correct

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

23Generating Checking Sequences

I Long tradition
I Moore, 19586

I The seminal paper
I The problem is set here

6Edward F. Moore. “Gedanken-Experiments on Sequential Machines”. In: J. Symbolic
Logic 23.1 (1958).

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

24Generating Checking Sequences (II)

I Long tradition
I Hennie, 19657

I Generating checking sequences
I The method is quite good, but not very algorithmic

7F. C. Hennie. “Fault-detecting experiments for sequential circuits”. In: Proceedings of
Fifth Annual Symposium on Circuit Theory and Logical Design. 1965, pp. 95–110.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

25Generating Checking Sequences (III)

I Long tradition
I Gonenc, 19708

I An algorithmic method
I Let us have a look

8G. Gonenc. “A method for the design of fault detection experiments”. In: IEEE
Transactions on Computers 19 (1970), pp. 551–558.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

26Distinguishing States

I A way to distinguish all states of the FSMs9

I Distinguishing Sequence
I Preset

I An input sequence
I Adaptive

I An decision tree (nodes are inputs, edges are outputs)

I Distinguishing Set
I A preset set of sequences, which common prefixes
I Equivalent to an Adaptive Distinguishing Sequence

9David Lee and Mihalis Yannakakis. “Testing Finite-State Machines: State Identification
and Verification”. In: IEEE Trans. Computers 43.3 (1994), pp. 306–320.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

27Distinguishing States (II)

I Preset Distinguishing Sequence
I Xd = yxy

I State 1 answers with 100
I State 2 answers with 010
I State 3 answers with 111
I State 4 answers with 011

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

28Distinguishing States (III)

I Insights
I Xd can be used to identify a unknown state of the machine
I Xd can be used to confirm that the machine is in a given state
I If Xd is applied to every state of the specification and the

implementation
I If the implementation answers as the specification

I Then, the implementation has at least 4 states
I Xd is a preset distinguishing sequence for the implementation

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

29Distinguishing States (IV)

I Insights
I Xd Xd can be used to confirm the state reached by the first application

of Xd
I If Xd Xd is applied in each state

I Then, we can identify which state the implementation is in

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

30Distinguishing States (V)

I Insights
I For a given transition from a (known) state with a given input

I Xd can be used to confirm that the reached state is correct

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

31Generating a Checking Sequence

I α-sequences
I Recognizing states

I β-sequences
I Confirming transitions

I T -sequences (transfer sequences)
I Bridging from one state to another
I Gluing the sequences

I Avoiding circularity in the assumptions

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

32Generating a Checking Sequence (II)

I Consider the sequence
I Xd Xd Xd = yxyyxyyxy from state 1
I with outputs y.1 x.0 y.0 y.0 x.1 y.1 y.1 x.0 y.0

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

33Generating a Checking Sequence (III)

I Consider the sequence
I Xd Xd Xd = yxyyxyyxy from state 1
I with outputs [1]y.1 x.0 y.0 [4]y.0 x.1 y.1 [1]y.1 x.0 y.0

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

34Generating a Checking Sequence (IV)

I Consider the sequence
I Xd Xd Xd = yxyyxyyxy from state 1

I with outputs [1]y.1 x.0 y.0 [4]y.0 x.1 y.1 [1]y.1 x.0 y.0 (4)
I This is a α-sequence (1,Xd Xd Xd)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

35Generating a Checking Sequence (V)

I Consider the sequence
I Xd Xd = yxyyxy from state 2

I with outputs [2] y.0 x.1 y.0 [4] y.0 x.1 y.1 (4)
I This is another α-sequence (2,Xd Xd)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

36Generating a Checking Sequence (VI)

I Consider the sequence
I Xd Xd = yxyyxy from state 3

I with outputs [3] y.1 x.1 y.1 [1] y.1 x.0 y.0 (4)
I This is another α-sequence

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

37Generating a Checking Sequence (VII)

I The alpha set is the set of α-sequences, marked with the respective
starting states

I There are three (1,Xd Xd Xd),(2,Xd Xd),(3,Xd Xd)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

38Generating a Checking Sequence (VIII)

I The β-sequences are generated per transition
I Consider the transition (1,x)

I The corresponding β-sequence is xXd = (1)x .0[2]y .0x .1y .0(4)
I Actually (1,xXd )

I There are, then, eight β-sequences, one for each transitions

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

39Generating a Checking Sequence (IX)

I Testing fragments
I (1,Xd Xd Xd ,4), (2,Xd Xd ,4), (3,Xd Xd ,4)
I (1,xXd ,4), (1,yXd ,4), (2,xXd ,1), (2,yXd ,1), (3,xXd ,4), (3,yXd ,1),

(4,xXd ,4), (4,yXd ,1)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

40Generating a Checking Sequence (X)

I Gluing them
I Using transfer sequences (T -sequences) if needed

I Avoid circularity
I (1,Xd Xd Xd ,4) (4,x ,2) (2,Xd Xd ,4) (4,y ,3) (3,Xd Xd ,4) (4,xXd ,4)

(4,yXd ,1) (1,yXd ,4) (4,x ,2) (2,xXd ,1) (1,xXd ,4) (4,x ,2)
(2,yXd ,1) (1,xx ,3) (3,xXd ,4) (4,y ,3) (3,yXd ,1)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

41Generating a Checking Sequence (XI)

I Extracting the checking sequence
I Xd Xd Xd xXd Xd yXd Xd xXd yXd yXd xxXd xXd xyXd xxxXd yyXd
I yxyyxyyxyxyxyyxyyyxyyxyxyxyyyxyyyxyxxyxyxyxyxyyxyxxxyxyyyyxy

I Length 60

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

42Generating a Checking Sequence (XII)

I Optimizing T -sequences10

I Generating a graph with α-, β- and (sort of) T -sequences
I Find the shortest sequence with all α- and β-sequences

I T -sequences are optional
I Rural Chinese Postman Problem (RCPP)11

I In the best scenario, no T -sequences.
I The shortest possible with this approach is of length 53

10H. Ural, X. Wu, and F. Zhang. “On minimizing the lengths of checking sequences”. In:
IEEE Transactions on Computers 46.1 (1997), pp. 93–99.

11R. M. Hierons and H. Ural. “Optimizing the length of checking sequences”. In: IEEE
Transactions on Computers 55.5 (2006), pp. 618–629.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

43Local Optimization Method

I Greedy approach12

I Until all transitions are verified
I (Case 1) the current state is not recognized

I Apply the distinguishing sequence for that state
I (Case 2) the current state is recognized and there is a non-verified

input at the end state
I Apply the input plus the distinguishing sequence

I (Case 3) the current state is recognized and all inputs are verified at
the end state

I Transfer to a state with non-verified input, using only verified transitions

12Adenilso Simao and Alexandre Petrenko. “Generating Checking Sequences for Partial
Reduced Finite State Machines”. In: Testing of Software and Communicating Systems,
20th IFIP TC 6/WG 6.1 International Conference, TestCom 2008, 8th International
Workshop, FATES 2008, Tokyo, Japan, June 10-13, 2008, Proceedings. 2008,
pp. 153–168.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

44Local Optimization Method (II)

I Insights
I Sometimes it is possible to use shorter sequence to distinguish

I As in13

I Sometimes a transition is verified indirectly
I As in14

13Hasan Ural and Fan Zhang. “Reducing the Lengths of Checking Sequences by
Overlapping”. In: Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International
Conference, TestCom 2006, New York, NY, USA, May 16-18, 2006, Proceedings. 2006,
pp. 274–288.

14Jessica Chen et al. “Eliminating Redundant Tests in a Checking Sequence”. In:
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference,
TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings. 2005,
pp. 146–158.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

45Local Optimization Method (III)

I X 1
d = y .1x .0

I X 2
d = y .0x .1y .0

I X 3
d = y .1x .1

I X 4
d = y .0x .1y .1

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

46Local Optimization Method (IV)

I We start applying Xd
I ω = [1]y .1x .0

I We apply Xd again
I ω = [1]y .1x .0[2]y .0x .1y .0
I The fragment (1,yx ,2) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

47Local Optimization Method (V)

I We apply Xd again, but using the fact that a suffix of ω is a prefix of
Xd

I ω = [1]y .1x .0[2]y .0x .1[2]y .0x .1y .0
I The fragment (2,yx ,2) is verified
I Then

I ω = [1]y .1x .0[2]y .0x .1[2]y .0x .1[2]y .0

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

48Local Optimization Method (VI)

I We apply Xd again
I This time, there is no point in reusing the suffix
I ω = [1]y .1x .0[2]y .0x .1[2]y .0x .1[2]y .0[4]y .0x .1y .1
I The fragment (2,y ,4) is verified

I It is the transition (2,y)
I As fragments (2,yx ,2) and (2,y ,4) are verified, so is (4,x ,2)

I Another transition is verified: (4,x)
I ω = [1]y .1x .0[2]y .0(4)x .1[2]y .0(4)x .1[2]y .0[4]y .0x .1y .1

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

49Local Optimization Method (VII)

I We apply Xd again
I ω = [1]y .1x .0[2]...[4]y .0x .1[1]y .1x .0[2]

I Since (1,yx ,2) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

50Local Optimization Method (VIII)

I There is an unverified transition in state 2, name (2,x)
I Then, apply input x , followed by the Xd
I ω = [1]y .1x .0[2]...[4]y .0x .1[1]y .1x .0[2]x .1[3]y .1x .1
I The fragment (2,x ,3) is verified

I Transition (2,x) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

51Local Optimization Method (IX)

I We apply Xd
I ω = [1]y .1x .0[2]...[2]x .1[3]y .1x .1[1]y .1x .0[2]

I Since (1,yx ,2) is verified
I The fragment (3,yx ,1) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

52Local Optimization Method (X)

I There is no unverified transition from state 2
I Transfer to a state where there is

I Using only verified transitions
I ω = [1]y .1x .0[2]...[1]y .1x .0[2]x .1[3]

I Since (2,x ,3) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

53Local Optimization Method (XI)

I Verify transitions either (3,x) or (3,y)
I Let us choose (3,y)

I Apply y , then Xd

I ω = [1]y .1x .0[2]...[1]y .1x .0[2]x .1[3]y .1[3]y .1(3)x .1[1]
I The fragment (3,y ,3) is verified
I So are transitions (3,y) and (3,x)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

54Local Optimization Method (XII)

I Verify transitions either (1,x) or (1,y)
I Let us choose (1,y)

I Apply y , then Xd

I ω = [1]y .1x .0[2]...[3]y .1[3]x .1[1]y .1[1]y .1(1)x .0[2]

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

55Local Optimization Method (XIII)

I There is no unverified transition from state 2
I Transfer to a state where there is
I ω = [1]y .1x .0[2]...[1]y .1(1)x .0[2]y .0[4]

I Since (2,y ,4) is verified

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

56Local Optimization Method (XIV)

I Verify transitions (4,y)
I Apply y , then Xd

I ω = [1]y .1x .0[2]...[2]y .0[4]y .0[3]y .1x .1

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

57Local Optimization Method (XV)

I ω = yxyxyxyyxyxxyxyxxyyxyyxyyyx
I Length 27

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

58Distinguishing Set

I One sequence for each state
I For each pair of states, there exists a common prefix of both

corresponding sequences which separates them
I X 1

d = y .1x .0
I X 2

d = y .0y .0
I X 3

d = y .1x .1
I X 4

d = y .0y .1

I Adaptive Distinguishing Sequence

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

59Distinguishing Set (II)

I A shorter checking sequence (in some cases)
I In the running example

I ω = yxyyyxyxxyxyyxxyyxxyxyy
I Length 23

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

60Without Distinguishing Sequence

I A characterization set15

I A set of sequences
I For each pair of states, there exists a sequence which separates them
I Always available for minimal machines

15T. S. Chow. “Testing Software Design Modeled by Finite-State-Machines”. In: IEEE
Transactions on Software Engineering 4.3 (May 1978), pp. 178–186.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

61Without Distinguishing Sequence (II)

I The set of sequence should be applied to same state of the
implementation

I Signature
I How to return to the same state in the implementation?

I Locating sequence16,17

16F. C. Hennie. “Fault-detecting experiments for sequential circuits”. In: Proceedings of
Fifth Annual Symposium on Circuit Theory and Logical Design. 1965, pp. 95–110.

17Ali Rezaki and Hasan Ural. “Construction of checking sequences based on
characterization sets”. In: Computer Communications 18.12 (1995), pp. 911–920.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

62Without Distinguishing Sequence (III)

I Characterization set
I W = {x ,yx}

I Suppose we are at state s we suspect to be 2
I Apply yx observing 11

I It can be state 4 instead

I How to come back to s to apply x?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

63Without Distinguishing Sequence (IV)

I Repeating yx many times
I We do the following

I L2 = s1 yx xyy s2 yx xyy s3 yx xyy s4 yx xyy s5 yx xyy s6 x
I yxxyy cycles from state 2 back to state 2, in the specification

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

64Without Distinguishing Sequence (V)

I L2 = s1 yx xyy s2 yx xyy s3 yx xyy s4 yx xyy s5 yx xyy s6 x
I As there are 4 states

I Two of the states in the set {s1,s2,s3,s4,s5} should be the same
I Then, s6 should be one of the states {s1,s2,s3,s4} for which we know

the answer for yx
I We then can infer which state it is, from the answers for yx and x

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

65Without Distinguishing Sequence (VI)

I L2 = yxxyyyxxyyyxxyyyxyyyxxyy [2]x
I L2 is a locating sequence for state 2

I L1 = yxxyxxyxxyxxyxx[1]x
I L1 is a locating sequence for state 1

I L3 = yxyxyxyxyx[3]x
I L3 is a locating sequence for state 3

I L4 = yxxyyxxyyxxyyxxyyxxy [4]x
I L4 is a locating sequence for state 4

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

66Without Distinguishing Sequence (VII)

I Apply all locating sequences
I It should be done first

I Suppose we would like to check the end state after an input
sequence α after state 4

I Apply L2T4αyx and L2T4αx
I T4 transfer to state 4 in the specification

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

67Sufficient Conditions

I Why the method work
I A framework for proving correctness

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

68Sufficient Conditions (II)

I Confirmed Sequences
I When it is possible to be sure in which state the implementation is at

I Convergence (and Divergence)
I When it is possible to be sure that two sequences reach the same

state (or distinct states)

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

69Sufficient Conditions (III)

I Consider the sequence
I xyyxyxxyxyxyxyyyx

I Length 17

I It is a checking sequence
I It can be proved by using the sufficient conditions

I Theorems and Lemmas in18

18Adenilso Simao and Alexandre Petrenko. “Checking Completeness of Tests for Finite
State Machines”. In: IEEE Transactions on Computers 59 (2010), pp. 1023–1032.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

70Sufficient Conditions (IV)

I Adding the outputs
I ?x0?y0?y0?x1?y1?x0?x1?y1?x1?y1?x0?y0?x1?y0?y0?y1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

71Sufficient Conditions (IV)

I Adding the outputs
I ?x0?y0?y0?x1?y1?x0?x1?y1?x1?y1?x0?y0?x1?y0?y0?y1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

72Sufficient Conditions (IV)

I Adding the outputs
I ?x0?y0?y0?x1?y1?x0?x1?y1?x1?y1?x0?y0?x1?y0?y0?y1?x1?

I Identifying 4 states which cannot be the same in any implementation
passing the test

I ?x0?y0?y0?x1?y1?x0?x1?y1?x1?y1?x0?y0?x1?y0?y0?y1?x1?
I Finding an n-clique in an n-partite graph!
I NP-Complete

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

73Sufficient Conditions (V)

I Marking them
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1?y1?x0?y0?x1?y0Dy0?y1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

74Sufficient Conditions (VI)

I Finding states which cannot be three of them
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1?y1?x0?y0?x1?y0Dy0?y1?x1?

I Marking them with the only one it can be
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1By1?x0?y0?x1?y0Dy0?y1?x1?
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0?y1?x1?
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

75Sufficient Conditions (VII)

I How about this state?
I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?

I Either A or D

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

76Sufficient Conditions (VIII)

I As the implementation is deterministic, if two points are the same
state, the common suffixes lead to the same state

I ?x0Ay0?y0?x1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?
I ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?
I ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

77Sufficient Conditions (IX)

I We now that the previous state cannot be D
I ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0?y0?x1Ay0Dy0Cy1?x1?
I ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0Ay0?x1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

78Sufficient Conditions (X)

I Common suffixes again
I ?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0Ay0?x1Ay0Dy0Cy1?x1?
I

?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

79Sufficient Conditions (XI)

I Common suffixes again
I

?x0Ay0Dy0Cx1By1?x0?x1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?
I

?x0Ay0Dy0Cx1By1?x0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

80Sufficient Conditions (XII)

I We can infer the initial state now
I

?x0Ay0Dy0Cx1By1?x0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?
I

Bx0Ay0Dy0Cx1By1?x0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

81Sufficient Conditions (XIII)

I We can also infer other states
I

Bx0Ay0Dy0Cx1By1?x0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

82Sufficient Conditions (XIV)

I We can also infer other states
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1?x1By1?x0Ay0Dx1Ay0Dy0Cy1?x1?
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1?x1By1Bx0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

83Sufficient Conditions (XV)

I We can also infer other states
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1?x1By1Bx0Ay0Dx1Ay0Dy0Cy1?x1?
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1Cx1By1Bx0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

84Sufficient Conditions (XVI)

I All transitions are inferred
I

Bx0Ay0Dy0Cx1By1Bx0Ax1Cy1Cx1By1Bx0Ay0Dx1Ay0Dy0Cy1?x1?

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

85Sufficient Conditions (XVII)

I Thus, it is a checking sequence
I xyyxyxxyxyxyxyyyx

I Length 17

I It is very close to the shortest possible
I xyxyyyyyxyxxxx

I Length 14

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

86Related work

I Extensions to the RCPP approach
I Using adaptive distinguishing sequences19

I Avoiding verifying some transitions20

I Allowing for overlapping21

19Robert M. Hierons et al. “Using adaptive distinguishing sequences in checking
sequence constructions”. In: Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008. 2008, pp. 682–687.

20Jessica Chen et al. “Eliminating Redundant Tests in a Checking Sequence”. In:
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference,
TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings. 2005,
pp. 146–158.

21Hasan Ural and Fan Zhang. “Reducing the Lengths of Checking Sequences by
Overlapping”. In: Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International
Conference, TestCom 2006, New York, NY, USA, May 16-18, 2006, Proceedings. 2006,
pp. 274–288.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

87Related work (II)

I Extension to greedy approach
I Using UIOs22

I Dealing with non-deterministic machines23

22Adenilso Simao and Alexandre Petrenko. “Checking Sequence Generation Using
State Distinguishing Subsequences”. In: Second International Conference on Software
Testing Verification and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009,
Workshops Proceedings. 2009, pp. 48–56.

23Alexandre Petrenko, Adenilso Simao, and Nina Yevtushenko. “Generating Checking
Sequences for Nondeterministic Finite State Machines”. In: Fifth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2012, Montreal, QC,
Canada, April 17-21, 2012. 2012, pp. 310–319.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

88Related work (III)

I Recent work
I Generating good adaptive distinguishing sequences24

I Removing (some) repetition in Locating Sequences25

I Combining several distinguishing sequences26

24Uraz Cengiz Türker, Tonguç Ünlüyurt, and Hüsnü Yenigün. “Effective algorithms for
constructing minimum cost adaptive distinguishing sequences”. In: Information &
Software Technology 74 (2016), pp. 69–85.

25Guy-Vincent Jourdan, Hasan Ural, and Hüsnü Yenigün. “Reducing locating sequences
for testing from finite state machines”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016. 2016, pp. 1654–1659.

26Canan Güniçen, Guy-Vincent Jourdan, and Hüsnü Yenigün. “Using Multiple Adaptive
Distinguishing Sequences for Checking Sequence Generation”. In: Testing Software and
Systems - 27th IFIP WG 6.1 International Conference, ICTSS 2015, Sharjah and Dubai,
United Arab Emirates, November 23-25, 2015, Proceedings. 2015, pp. 19–34.

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

89Concluding Remarks

I Checking sequence
I When reseting is not an option

I Long tradition
I Old, but gold

I Not rocket science

I Still active

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

90Concluding Remarks (II)

I Thank you! ,

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br


Introduction Generation Methods Sufficient Conditions Conclusion

Generating Checking Sequences: When Reseting is
not an Option

Adenilso Simão - USP - Brazil
adenilso@icmc.usp.br

Departamento de Sistemas de Computação
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

TAROT - Paris - France - 2016-07-04

Adenilso Simão - USP - Brazil adenilso@icmc.usp.br: Generating Checking Sequences: When Reseting is not an Option

adenilso@icmc.usp.br
adenilso@icmc.usp.br

	Introduction
	Generation Methods
	Sufficient Conditions
	 Conclusion 

