
1/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“Non-intrusive” Testing Techniques for
Communication Protocols

12th TAROT Summer School, Paris, France

Jorge López
<jorge.lopez[at]telecom-sudparis.eu>

Télécom SudParis / Université Paris-Saclay

July 8th, 2016

2/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

OUTLINE

MOTIVATION AND INTRODUCTION

STATIC CODE ANALYSIS

NETWORK TRACE ANALYSIS

FUTURE WORK / CONCLUSIONS

3/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ACKNOWLEDGMENT. . .

The results presented in this talk were obtained along with
different co-authors. Therefore, a special thank note is
dedicated to those who directly contributed in this talk, they
are:

I Ana Cavalli
I Natalia Kushik
I Stephane Maag
I Gerardo Morales
I Nina Yevtushenko

Спасибо! ¡Gracias! Merci !

I would also like to thank all the speakers of TAROT, including
students. Your presentations were fantastic and will enrich this
presentation.

4/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

MOTIVATION

I The widespread adoption of applications using networks
(i.e., communication protocols)

I A second life (for some, their life)
I Critical Operations + Sensitive Information
I Tell me the last application you used which does not

interact over the network?

Important
Testing is crucial for such systems (or applications)!

4/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

MOTIVATION

I The widespread adoption of applications using networks
(i.e., communication protocols)

I A second life (for some, their life)

I Critical Operations + Sensitive Information
I Tell me the last application you used which does not

interact over the network?

Important
Testing is crucial for such systems (or applications)!

4/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

MOTIVATION

I The widespread adoption of applications using networks
(i.e., communication protocols)

I A second life (for some, their life)
I Critical Operations + Sensitive Information

I Tell me the last application you used which does not
interact over the network?

Important
Testing is crucial for such systems (or applications)!

4/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

MOTIVATION

I The widespread adoption of applications using networks
(i.e., communication protocols)

I A second life (for some, their life)
I Critical Operations + Sensitive Information
I Tell me the last application you used which does not

interact over the network?

Important
Testing is crucial for such systems (or applications)!

4/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

MOTIVATION

I The widespread adoption of applications using networks
(i.e., communication protocols)

I A second life (for some, their life)
I Critical Operations + Sensitive Information
I Tell me the last application you used which does not

interact over the network?

Important
Testing is crucial for such systems (or applications)!

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

5/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

“NON-INTRUSIVE” TESTING OF COMMUNICATION

SYSTEMS

Testing of communication systems

I Active testing feels like an intuitive method for testing
software and systems

I Sometimes you can’t interfere the system!

Reasons not to interfere the system?

I The data on the system are susceptible towards the
execution of tests

I Certain functionality is not available if “real” data are not
processed

I Even if a system can be interrupted, we might want to test
the “real” service / application / data

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .

I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach

I We assume we do not disrupt the implementation, we have
an access to its source code

I Analyzing its code, we test the implementation
I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code

I Analyzing its code, we test the implementation
I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis

I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis
I A “black-box’ approach

I We assume we do not disrupt the implementation, we have
an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis
I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis
I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

6/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

METHODS FOR NON-INTRUSIVE TESTING

We focus on two of them. . .
I Static (code) analysis

I A “white-box’ approach
I We assume we do not disrupt the implementation, we have

an access to its source code
I Analyzing its code, we test the implementation

I Passive network trace analysis
I A “black-box’ approach
I We assume we do not disrupt the implementation, we have

an access to the “messages” being exchanged by the
implementation

I The “source” where the messages are taken is called a Point
of Observation (P.O.)

Let’s take a look at each of them. . . “on y va”

7/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

Static Code Analysis 101

8/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS

/*Test equal distribution of random number generation algorithm*/
#include <stdio.h>
#include <stdlib.h>
#define NUM 30
#define MEM_SIZE 512*1024 //512MB
int main()
{

short i = 0 , j;
long acc = 0;
char *numbers = malloc(MEM_SIZE);
if(!numbers)
{

printf(‘‘Can’t allocate memory\n’’);
exit(-1);

}
while (1)
{

numbers[i] = rand() % NUM ; //random numbers from 0 - NUM
acc = 0;
for (j = 0; j < i; j++)

acc += numbers[j];
printf(‘‘New average: %ld\n’’, acc/++i); //should converge to NUM/2

}
}

Do you see any problems with the code?

9/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS (CONT.)
/*Test equal distribution of random number generation algorithm*/
#include <stdio.h>
#include <stdlib.h>
#define NUM 30
#define MEM_SIZE 512*1024 //512MB
int main()
{

short i = 0 , j;
long acc = 0;
char *numbers = malloc(MEM_SIZE);
if(!numbers)
{

printf(‘‘Can’t allocate memory\n’’);
exit(-1);

}
while (1)
{

numbers[i] = rand() % NUM ; //random numbers from 0 - NUM
acc = 0;
for (j = 0; j < i; j++)

acc += numbers[j];
printf(‘‘New average: %ld\n’’, acc/++i); //should converge to NUM/2

}
}

Hard to see, hard to detect (iteration # 32,768)

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)

I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

10/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC (CODE) ANALYSIS

We can look for anything. . .

I Which is not functional related (the code compiles)
I Usually we check properties

I For instance, for the simple grammar P 7→ P P|(P)|(),
ensure that on the even parenthesis list elements, the depth
level is not more than 2
(())()()((())) violates the property, but (((())))() does not
(i.e., is valid)

I Ensure that starting from the N-th element of the list at
least m levels are found
For N = 2,m = 2, ()()() violates the property, and
()(())((())) does not

I For a more complex grammar there is much more fun :)

I Let’s look at more real-world examples. . .

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked

I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked

I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks

I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks

I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS

I Works by supplying data to users which can lead to
insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS
I Works by supplying data to users which can lead to

insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

11/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES

Source Code Security Issues

I Many problems arise when the user input is not checked
I Cross-Site Scripting (XSS) attacks
I SQL injection (SQLI) attacks
I Buffer overflow attacks

XSS
I Works by supplying data to users which can lead to

insecure actions, executing unwanted javascript, or adding
a sub-site filled with publicity or others

I Simple example: in a forum, users are allowed to insert
comments. If the comment is displayed as-it-is, an attacker
might successfully inject malicious code that will affect the
forum users

12/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES II
SQLI

I Essentially works by supplying data to the database for
executing undesired actions, e.g., a user inputs a search
criterion, and the database looks for the users matching
this criterion:
SELECT * from users where name=’$CRIT’;

What if the criterion is:
a’; DROP TABLE users

How to prevent this attack using static analysis?

I A very simple approach is to guarantee that a sanitization
function is called before the storing or displaying the
input. Many languages provide such built-in functions,
e.g., PHP provides the htmlspecialchars() function

12/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES II
SQLI

I Essentially works by supplying data to the database for
executing undesired actions, e.g., a user inputs a search
criterion, and the database looks for the users matching
this criterion:
SELECT * from users where name=’$CRIT’;

What if the criterion is:
a’; DROP TABLE users

How to prevent this attack using static analysis?

I A very simple approach is to guarantee that a sanitization
function is called before the storing or displaying the
input. Many languages provide such built-in functions,
e.g., PHP provides the htmlspecialchars() function

12/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES II
SQLI

I Essentially works by supplying data to the database for
executing undesired actions, e.g., a user inputs a search
criterion, and the database looks for the users matching
this criterion:
SELECT * from users where name=’$CRIT’;

What if the criterion is:
a’; DROP TABLE users

How to prevent this attack using static analysis?

I A very simple approach is to guarantee that a sanitization
function is called before the storing or displaying the
input. Many languages provide such built-in functions,
e.g., PHP provides the htmlspecialchars() function

12/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES II
SQLI

I Essentially works by supplying data to the database for
executing undesired actions, e.g., a user inputs a search
criterion, and the database looks for the users matching
this criterion:
SELECT * from users where name=’$CRIT’;

What if the criterion is:
a’; DROP TABLE users

How to prevent this attack using static analysis?

I A very simple approach is to guarantee that a sanitization
function is called before the storing or displaying the
input. Many languages provide such built-in functions,
e.g., PHP provides the htmlspecialchars() function

13/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES III
Buffer Overflow

I The canonical example:

#include <string.h>
#define BUFFSIZE 100
void load (char *userdata){

char buff[BUFFSIZE];
strcpy(buff, userdata); //not good

}

int main (int argc, char **argv){
load(argv[1]);
...

}

I A string which is longer than BUFFSIZE will be written
into the memory space of the function load, potentially
overwriting the return address

I A string which contains code and the memory address of
this code in the position of the return address will do the
trick

13/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES III
Buffer Overflow

I The canonical example:

#include <string.h>
#define BUFFSIZE 100
void load (char *userdata){

char buff[BUFFSIZE];
strcpy(buff, userdata); //not good

}

int main (int argc, char **argv){
load(argv[1]);
...

}

I A string which is longer than BUFFSIZE will be written
into the memory space of the function load, potentially
overwriting the return address

I A string which contains code and the memory address of
this code in the position of the return address will do the
trick

13/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES III
Buffer Overflow

I The canonical example:

#include <string.h>
#define BUFFSIZE 100
void load (char *userdata){

char buff[BUFFSIZE];
strcpy(buff, userdata); //not good

}

int main (int argc, char **argv){
load(argv[1]);
...

}

I A string which is longer than BUFFSIZE will be written
into the memory space of the function load, potentially
overwriting the return address

I A string which contains code and the memory address of
this code in the position of the return address will do the
trick

13/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES III
Buffer Overflow

I The canonical example:

#include <string.h>
#define BUFFSIZE 100
void load (char *userdata){

char buff[BUFFSIZE];
strcpy(buff, userdata); //not good

}

int main (int argc, char **argv){
load(argv[1]);
...

}

I A string which is longer than BUFFSIZE will be written
into the memory space of the function load, potentially
overwriting the return address

I A string which contains code and the memory address of
this code in the position of the return address will do the
trick

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow

I If a program with a potentially susceptible stack overflow
runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once

I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed

I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

14/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS FOR SECURITY PROPERTIES IV

Buffer Overflow
I If a program with a potentially susceptible stack overflow

runs with admin privileges, consequences can be
devastating

Many other properties

I Each file should be closed only once
I Each db connection that was open should be closed
I Any other properties are welcome

How to perform static analysis (SA)?

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?

I A text representation of “computer instructions” in a
specific programming language

I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language

I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language
I Not text. . . Nor machine code

I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language
I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language
I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language
I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

15/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES

Source Code is?
I A text representation of “computer instructions” in a

specific programming language
I Not text. . . Nor machine code
I A description of a system

Static Analysis is?

I The analysis of source code is performed by a static
analyzer without executing the program under test

I The code is assumed to be compilable, thus we do not look
for lexical, syntactical, or type errors that a compiler finds

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?

I This would be terriblyn hard

I A data structure is needed to effectively manipulate it

I A famous structure to manipulate the source code is an
Abstract Syntax Tree (AST)

I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?

I This would be terriblyn hard
I A data structure is needed to effectively manipulate it

I A famous structure to manipulate the source code is an
Abstract Syntax Tree (AST)

I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it

I A famous structure to manipulate the source code is an
Abstract Syntax Tree (AST)

I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it

I A famous structure to manipulate the source code is an
Abstract Syntax Tree (AST)

I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it
I A famous structure to manipulate the source code is an

Abstract Syntax Tree (AST)

I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it
I A famous structure to manipulate the source code is an

Abstract Syntax Tree (AST)
I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it
I A famous structure to manipulate the source code is an

Abstract Syntax Tree (AST)
I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it
I A famous structure to manipulate the source code is an

Abstract Syntax Tree (AST)
I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

16/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS PRINCIPLES (CONT.)
How do we analyze the source code then?

I Can we treat it as text?
I This would be terriblyn hard

I A data structure is needed to effectively manipulate it
I A famous structure to manipulate the source code is an

Abstract Syntax Tree (AST)
I To build an AST, we need to parse the code

A parser. . .

I Can be generated automatically by a parser generator
(takes a context free grammar (CFG) as an input and
produces a parser)

I Takes a CFG production (a sentence / source code) and
produces a “parse tree”

17/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

AN AST

AST for 2 + 3 ∗ 4

18/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS

Mainly cares about data flow and data dependencies

Consider the following code:

void func (int x){
int y = 10;
int z = 2 + y;

if(x > 10){
z=10;
x = y + 1;

}
print(z);

}

How can Dataflow analysis help us?

18/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS

Mainly cares about data flow and data dependencies

Consider the following code:

void func (int x){
int y = 10;
int z = 2 + y;

if(x > 10){
z=10;
x = y + 1;

}
print(z);

}

How can Dataflow analysis help us?

18/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS

Mainly cares about data flow and data dependencies

Consider the following code:

void func (int x){
int y = 10;
int z = 2 + y;

if(x > 10){
z=10;
x = y + 1;

}
print(z);

}

How can Dataflow analysis help us?

19/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — FORWARD ANALYSIS

The data flow

20/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — FORWARD ANALYSIS

The data flow

Potential values

I Negative array indices
I Closed DB connections

20/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — FORWARD ANALYSIS

The data flow

Potential values

I Negative array indices
I Closed DB connections

20/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — FORWARD ANALYSIS

The data flow

Potential values
I Negative array indices

I Closed DB connections

20/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — FORWARD ANALYSIS

The data flow

Potential values
I Negative array indices
I Closed DB connections

21/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — BACKWARD ANALYSIS

The data flow

Data dependencies

I Useful for security testing
I Useful for dead code elimination

21/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — BACKWARD ANALYSIS

The data flow

Data dependencies

I Useful for security testing
I Useful for dead code elimination

21/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — BACKWARD ANALYSIS

The data flow

Data dependencies

I Useful for security testing

I Useful for dead code elimination

21/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — BACKWARD ANALYSIS

The data flow

Data dependencies

I Useful for security testing
I Useful for dead code elimination

22/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — CONTROL FLOW GRAPH

void func (int x){
//b1
int y = 10;
int z = 2 + y;

if(x > 10){
//b2
z=10;
x = y + 1;

}
//b3
print(z);

}

(b1)
y=10
z=2+y

(b2)
z=10
x=y+1

(b3)

x>10

x≤10

22/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — CONTROL FLOW GRAPH

void func (int x){
//b1
int y = 10;
int z = 2 + y;

if(x > 10){
//b2
z=10;
x = y + 1;

}
//b3
print(z);

}

(b1)
y=10
z=2+y

(b2)
z=10
x=y+1

(b3)

x>10

x≤10

23/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS

(b1)
y=10
z=2+y

(b2)
z=10
x=y+1

(b3)

x>10

x≤10

(b1)
x y z
↓ 10 12

(b2)
x y z

y+1 ↓ 10

(b3)
x y z
↓ ↓ ↓

x>10

x≤10

24/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS (2)

(b1)
x y z
↓ 10 12

(b2)
x y z

y+1 ↓ 10

(b3)
x y z
↓ ↓ ↓

x>10

x≤10

Putting inputs and
outputs. . .

I Assume ⊥ = not
enough information

I Assume > = “too
much” information
(all possible values)

24/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS (2)

(b1)
x y z
↓ 10 12

(b2)
x y z

y+1 ↓ 10

(b3)
x y z
↓ ↓ ↓

x>10

x≤10

Putting inputs and
outputs. . .

I Assume ⊥ = not
enough information

I Assume > = “too
much” information
(all possible values)

24/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS (2)

(b1)
x y z
↓ 10 12

(b2)
x y z

y+1 ↓ 10

(b3)
x y z
↓ ↓ ↓

x>10

x≤10

Putting inputs and
outputs. . .

I Assume ⊥ = not
enough information

I Assume > = “too
much” information
(all possible values)

24/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS (2)

(b1)
> > >
x y z
↓ 10 12
⊥ ⊥ ⊥

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Putting inputs and
outputs. . .

I Assume ⊥ = not
enough information

I Assume > = “too
much” information
(all possible values)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
⊥ ⊥ ⊥

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
⊥ ⊥ ⊥

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
⊥ ⊥ ⊥

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
⊥ ⊥ ⊥

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
⊥ ⊥ ⊥
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

(b1)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
⊥ ⊥ ⊥

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

(b2)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
⊥ ⊥ ⊥
x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

(b2)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
{>, 11} 10 {12, 10}

x y z
↓ ↓ ↓
⊥ ⊥ ⊥

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

(b3)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
{>, 11} {10} {12, 10}

x y z
↓ ↓ ↓
> 10 {12, 10}

x>10

x≤10

Propagation. . .

I Propagate from
inputs to outputs

I From one block to
another

I Join the inputs

(b3)

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
{>, 11} {10} {12, 10}

x y z
↓ ↓ ↓
> 10 {12, 10}

x>10

x≤10

Value Analysis
Yup... that’s what we did

I y=10 is truth for all
execution paths
Optimizations: constant
propagation (less
calculations), removal of
y (smaller stack
consumption)

I z ∈ {10, 12}
Optimizations: smaller
data type of z; perhaps
this might be further
used to verify that all
functions return values
between [11− 20]?

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
{>, 11} {10} {12, 10}

x y z
↓ ↓ ↓
> 10 {12, 10}

x>10

x≤10

Value Analysis
Yup... that’s what we did

I y=10 is truth for all
execution paths
Optimizations: constant
propagation (less
calculations), removal of
y (smaller stack
consumption)

I z ∈ {10, 12}
Optimizations: smaller
data type of z; perhaps
this might be further
used to verify that all
functions return values
between [11− 20]?

25/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW NOTIONS — THE PROPAGATION GAME

(b1)
> > >
x y z
↓ 10 12
> 10 12

(b2)
> 10 12
x y z

y+1 ↓ 10
11 10 10

(b3)
{>, 11} {10} {12, 10}

x y z
↓ ↓ ↓
> 10 {12, 10}

x>10

x≤10

Value Analysis
Yup... that’s what we did

I y=10 is truth for all
execution paths
Optimizations: constant
propagation (less
calculations), removal of
y (smaller stack
consumption)

I z ∈ {10, 12}
Optimizations: smaller
data type of z; perhaps
this might be further
used to verify that all
functions return values
between [11− 20]?

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L,∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L,∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice

I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...
Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)

I ∀x, y ∈ L,∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L,∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice

I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...
Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)

I If ∀S ⊆ L,∃ ∨ S(greatest element >) & ∧S(least element ⊥) L
is a complete lattice

I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...
Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L, ∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice
I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...

Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L, ∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice
I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...

Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L, ∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice
I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...

Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L

I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L, ∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice
I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...

Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function

I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}
(usually ∨ = ∪)

26/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS

Lattice L (The analysis domain)

I A partially ordered set (L,≤)
I ∀x, y ∈ L, ∃x ∨ y(sup) & ∃x ∧ y(inf)
I If ∀S ⊆ L, ∃ ∨ S(greatest element >) & ∧S(least element ⊥) L

is a complete lattice
I x0 ≤ x1 ≤ x2... =⇒ ∃n : xn = xn+1 = xn+2 = ...

Ensures ascending chain condition (no infinite progress)

Inputs, outputs, and transfer functions, depend on the
control flow block (CFB) b

I Transfer function fb : L → L
I Output outb = fb(inn) is calculated with a transfer function
I inb = denotes inputs of b, inb = ∨{outm|m ∈ pred(b)}

(usually ∨ = ∪)

27/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS (CONT.)

Requirements

I The join operation ∨must not lose information: ∨(x, y) ⊇ x
and ∨(x, y) ⊇ y

I ∀f ∈ F, x ⊆ y =⇒ f (x) ⊆ f (y), all transfer functions are
monotones, i.e., they preserve the given order

Necessary conditions for termination!

I Previous requirements + ascending chain condition

We won’t see proofs

I However, this is certainly proven and easy to find. . .

27/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS (CONT.)

Requirements

I The join operation ∨must not lose information: ∨(x, y) ⊇ x
and ∨(x, y) ⊇ y

I ∀f ∈ F, x ⊆ y =⇒ f (x) ⊆ f (y), all transfer functions are
monotones, i.e., they preserve the given order

Necessary conditions for termination!

I Previous requirements + ascending chain condition

We won’t see proofs

I However, this is certainly proven and easy to find. . .

27/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS (CONT.)

Requirements

I The join operation ∨must not lose information: ∨(x, y) ⊇ x
and ∨(x, y) ⊇ y

I ∀f ∈ F, x ⊆ y =⇒ f (x) ⊆ f (y), all transfer functions are
monotones, i.e., they preserve the given order

Necessary conditions for termination!

I Previous requirements + ascending chain condition

We won’t see proofs

I However, this is certainly proven and easy to find. . .

27/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS (CONT.)

Requirements

I The join operation ∨must not lose information: ∨(x, y) ⊇ x
and ∨(x, y) ⊇ y

I ∀f ∈ F, x ⊆ y =⇒ f (x) ⊆ f (y), all transfer functions are
monotones, i.e., they preserve the given order

Necessary conditions for termination!

I Previous requirements + ascending chain condition

We won’t see proofs

I However, this is certainly proven and easy to find. . .

27/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS BASICS (CONT.)

Requirements

I The join operation ∨must not lose information: ∨(x, y) ⊇ x
and ∨(x, y) ⊇ y

I ∀f ∈ F, x ⊆ y =⇒ f (x) ⊆ f (y), all transfer functions are
monotones, i.e., they preserve the given order

Necessary conditions for termination!

I Previous requirements + ascending chain condition

We won’t see proofs

I However, this is certainly proven and easy to find. . .

28/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATA ANALYSIS BASICS — CALCULATION

ALGORITHM

Maximal Fixed Point algorithm

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization (>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)
inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist ∪ b
end if

end while

28/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATA ANALYSIS BASICS — CALCULATION

ALGORITHM

Maximal Fixed Point algorithm

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization (>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)
inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist ∪ b
end if

end while

29/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

void bk (int j, char c[], size_t sc)
{

size_t midx = 4;
int d = 0,i =0;
while(i< j)
{

d = midx - i;
c[d] = i;
i++;

}
}

(b1)
j sc midx d i
↓ ↓ 4 0 0

(b2)
j sc midx d i
↓ ↓ ↓ midx-i i+1

(b3)
j sc midx d i
↓ ↓ ↓ ↓ ↓

i<j

i≥j

i≥j

i<j

30/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(2)
Lattice L is defined over the
set of all subsets of {−, 0,+}
and ⊆

I ∨ = ∪
> ∈ {+,−}
⊥ = no information yet

I Operations over L
I Addition(

⊕
) and

multiplication (
⊗

) of
lattice values:
{−}

⊕
{+} =

{−, 0,+} ∧ {0}
⊕
{+} =

{+} ∧ {−}
⊕
{−}∧. . .

I fb ∈ F use operations +
sign of constants

(b1)
j sc midx d i
↓ ↓ 4 0 0

(b2)
j sc midx d i
↓ ↓ ↓ midx-i i+1

(b3)
j sc midx d i
↓ ↓ ↓ ↓ ↓

i<j

i≥j

i≥j

i<j

30/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(2)
Lattice L is defined over the
set of all subsets of {−, 0,+}
and ⊆

I ∨ = ∪
> ∈ {+,−}
⊥ = no information yet

I Operations over L
I Addition(

⊕
) and

multiplication (
⊗

) of
lattice values:
{−}

⊕
{+} =

{−, 0,+} ∧ {0}
⊕
{+} =

{+} ∧ {−}
⊕
{−}∧. . .

I fb ∈ F use operations +
sign of constants

(b1)
j sc midx d i
↓ ↓ {+} {0} {0}

(b2)
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

(b3)
j sc midx d i
↓ ↓ ↓ ↓ ↓

i<j

i≥j

i≥j

i<j

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
j sc midx d i
↓ ↓ {+} {0} {0}

(b2)
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

(b3)
j sc midx d i
↓ ↓ ↓ ↓ ↓

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
j sc midx d i
↓ ↓ {+} {0} {0}
⊥ ⊥ ⊥ ⊥ ⊥

(b2)
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
⊥ ⊥ ⊥ ⊥ ⊥

(b2)
> > > > >
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← B \ {b0}
while worklist 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > > > >
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while worklist 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > > > >
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > > > >
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)
for all b ∈ B do

outb ← fb(⊥)
end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b2,b3}
)//b=b2

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > > > >
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0} {0}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

⊥ ⊥ ⊥ ⊥ ⊥

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0} {0}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+} {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb2 changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0} {0}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+} {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb2 changed then
{b3} ← {b3} ∪ {b2}

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0} {0}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+} {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0} {0}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+} {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0,+} {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+} {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0,+} {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} {+,−} = > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb2 changed then
{b3} ← {b3} ∪ {b2}

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0,+} {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} {0,+} {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb2 ← ∨{outm|m ∈ pred(b2)}
outb2 ← fb2(inb2)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b3} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > > > >
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b3} 6= ∅ do

b← pop({})

inb3 ← ∨{outm|m ∈ pred(b3)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
⊥ ⊥ ⊥ ⊥ ⊥

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb3 ← ∨{outm|m ∈ pred(b3)}
outb3 ← fb3(inb3)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb3 ← ∨{outm|m ∈ pred(b3)}
outb3 ← fb3(inb3)
if outb changed then
{} ←worklist ∪ {b3}

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b3} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b3} 6= ∅ do

b← pop({})

inb3 ← ∨{outm|m ∈ pred(b3)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {b2,b3} 6= ∅ do

b← pop({b3})

inb3 ← ∨{outm|m ∈ pred(b3)}
outb3 ← fb3(inb3)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

31/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3)

for all b ∈ B do
outb ← fb(⊥)

end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

(b1)
> > > > >
j sc midx d i
↓ ↓ {+} {0} {0}
> > {+} {0} {0}

(b2)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ {[midx]}

⊕
{−}

⊗
{[i]} {[i]}

⊕
{+}

> > {+} > {+}

(b3)
> > {+} > {0,+}
j sc midx d i
↓ ↓ ↓ ↓ ↓
> > {+} > {0,+}

32/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3.1)
for all b ∈ B do

outb ← fb(⊥)
end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

Fixpoint Reached!

Possible values:
j sc midx d i
> > {+} > {0,+}

(specially in b2)

void bk (int j, char c[], size_t sc)
{

size_t midx = 4;
int d = 0,i =0;
while(i< j)
{

d = midx - i;
c[d] = i;
i++;

}
}

32/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3.1)
for all b ∈ B do

outb ← fb(⊥)
end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

Fixpoint Reached!
Possible values:

j sc midx d i
> > {+} > {0,+}

(specially in b2)

void bk (int j, char c[], size_t sc)
{

size_t midx = 4;
int d = 0,i =0;
while(i< j)
{

d = midx - i;
c[d] = i;
i++;

}
}

32/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DATAFLOW ANALYSIS — SIGN ANALYSIS EXAMPLE

(3.1)
for all b ∈ B do

outb ← fb(⊥)
end for
inb0 ← I //I=initialization
(>.⊥, ∅ are usual)
outb0 ← fn0(I)
worklist← {b2, b3}
while {} 6= ∅ do

b← pop(worklist)

inb ← ∨{outm|m ∈ pred(b)}
outb ← fb(inb)
if outb changed then

worklist←worklist
∪ b

end if
end while

Fixpoint Reached!
Possible values:

j sc midx d i
> > {+} > {0,+}

(specially in b2)

void bk (int j, char c[], size_t sc)
{

size_t midx = 4;
int d = 0,i =0;
while(i< j)
{

d = midx - i;
c[d] = i;
i++;

}
}

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable
I There exist well-known plug-in (or feature) based tools,

e.g., Frama-C
I There exist other formal approaches, e.g., abstract

interpretation

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable
I There exist well-known plug-in (or feature) based tools,

e.g., Frama-C
I There exist other formal approaches, e.g., abstract

interpretation

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable
I There exist well-known plug-in (or feature) based tools,

e.g., Frama-C
I There exist other formal approaches, e.g., abstract

interpretation

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable

I There exist well-known plug-in (or feature) based tools,
e.g., Frama-C

I There exist other formal approaches, e.g., abstract
interpretation

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable
I There exist well-known plug-in (or feature) based tools,

e.g., Frama-C

I There exist other formal approaches, e.g., abstract
interpretation

33/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATIC ANALYSIS – FINAL REMARKS

I It can be used for many things including statement
reachability

I It can be used for test generation, for determining the
inputs that will cover the code

I False-positives can be acceptable
I There exist well-known plug-in (or feature) based tools,

e.g., Frama-C
I There exist other formal approaches, e.g., abstract

interpretation

34/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

Passive Testing using Network
Traces

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client
I P.O. = one network interface of the server (usually a P.O. is

associated with a network host, it can vary. . .)
I No information regarding on-line or off-line trace

collection (perhaps on-line is more interesting)

How do we test this?

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client
I P.O. = one network interface of the server (usually a P.O. is

associated with a network host, it can vary. . .)
I No information regarding on-line or off-line trace

collection (perhaps on-line is more interesting)

How do we test this?

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client

I P.O. = one network interface of the server (usually a P.O. is
associated with a network host, it can vary. . .)

I No information regarding on-line or off-line trace
collection (perhaps on-line is more interesting)

How do we test this?

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client
I P.O. = one network interface of the server (usually a P.O. is

associated with a network host, it can vary. . .)

I No information regarding on-line or off-line trace
collection (perhaps on-line is more interesting)

How do we test this?

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client
I P.O. = one network interface of the server (usually a P.O. is

associated with a network host, it can vary. . .)
I No information regarding on-line or off-line trace

collection (perhaps on-line is more interesting)

How do we test this?

35/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

ARCHITECTURE(EXAMPLE)
An image, 103 words. . .

I Direction: From server to client
I P.O. = one network interface of the server (usually a P.O. is

associated with a network host, it can vary. . .)
I No information regarding on-line or off-line trace

collection (perhaps on-line is more interesting)

How do we test this?

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.

I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack

I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.

I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack

I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.

I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack

I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.

I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack
I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.
I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack

I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.
I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack
I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.
I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack
I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

36/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 101
What is DPI?

I The process of examining the data of a network packet
when searching for specific parameter values in it:

I Protocol non-compliance, e.g., TCP SYN-FIN (or xmas tree
packet)

I Viruses, buffer overflows, etc.
I These can be identified by a signature
I A signature is a known binary sequence inside a packet that

identifies the attack
I Specific application layer data, for instance:
a’; DROP TABLE users

What to do, once certain value is found?

I Report the finding (usually the search targets for
prohibited elements)

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular
I Off-line approaches are sometimes considered as a form of

computer forensics (examining an already killed
computer)

How to describe which values to search?

I There exist various approaches (Cisco, Snort, etc.),
nonetheless, they tend to have common points. . .

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular
I Off-line approaches are sometimes considered as a form of

computer forensics (examining an already killed
computer)

How to describe which values to search?

I There exist various approaches (Cisco, Snort, etc.),
nonetheless, they tend to have common points. . .

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular

I Off-line approaches are sometimes considered as a form of
computer forensics (examining an already killed
computer)

How to describe which values to search?

I There exist various approaches (Cisco, Snort, etc.),
nonetheless, they tend to have common points. . .

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular
I Off-line approaches are sometimes considered as a form of

computer forensics (examining an already killed
computer)

How to describe which values to search?

I There exist various approaches (Cisco, Snort, etc.),
nonetheless, they tend to have common points. . .

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular
I Off-line approaches are sometimes considered as a form of

computer forensics (examining an already killed
computer)

How to describe which values to search?

I There exist various approaches (Cisco, Snort, etc.),
nonetheless, they tend to have common points. . .

37/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DEEP PACKET INSPECTION (DPI) 102

I Mostly in firewalls, Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS)

I Off-line approaches are not very popular
I Off-line approaches are sometimes considered as a form of

computer forensics (examining an already killed
computer)

How to describe which values to search?
I There exist various approaches (Cisco, Snort, etc.),

nonetheless, they tend to have common points. . .

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”

I For common protocols (IP, TCP, UDP, HTTP, etc.) variables
are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

38/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DESCRIBING VALUES IN DPI

Based on “rules”
I For common protocols (IP, TCP, UDP, HTTP, etc.) variables

are provided, for example:

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

I A signature can be described as a set of strings (potentially
binary) of a regular language

I It can be described by a regular expression

alert tcp any any -> any 80 (content:"/foo.php?id=";
pcre:"/foo.php?id=[0-9]{1,10}/iU";)

(All the previous rules were written using the syntax of
snort)

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI

I Each rule is applied to each network packet and no state is
saved

I It can be good if we are tying to search for a virus
transmitted over SMTP, for instance

Stateful DPI

I Certain information regarding the state of the connection
gets stored

I For example, the FTP data channel get associated to the
FTP control channel

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI
I Each rule is applied to each network packet and no state is

saved

I It can be good if we are tying to search for a virus
transmitted over SMTP, for instance

Stateful DPI

I Certain information regarding the state of the connection
gets stored

I For example, the FTP data channel get associated to the
FTP control channel

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI
I Each rule is applied to each network packet and no state is

saved
I It can be good if we are tying to search for a virus

transmitted over SMTP, for instance

Stateful DPI

I Certain information regarding the state of the connection
gets stored

I For example, the FTP data channel get associated to the
FTP control channel

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI
I Each rule is applied to each network packet and no state is

saved
I It can be good if we are tying to search for a virus

transmitted over SMTP, for instance

Stateful DPI

I Certain information regarding the state of the connection
gets stored

I For example, the FTP data channel get associated to the
FTP control channel

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI
I Each rule is applied to each network packet and no state is

saved
I It can be good if we are tying to search for a virus

transmitted over SMTP, for instance

Stateful DPI
I Certain information regarding the state of the connection

gets stored

I For example, the FTP data channel get associated to the
FTP control channel

39/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATELESS AND STATEFUL DPI CONCEPTS

Stateless DPI
I Each rule is applied to each network packet and no state is

saved
I It can be good if we are tying to search for a virus

transmitted over SMTP, for instance

Stateful DPI
I Certain information regarding the state of the connection

gets stored
I For example, the FTP data channel get associated to the

FTP control channel

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

40/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

BEYOND DPI
What if we want more?.. What is more?

I The Very Simple Network Protocol (VSNP)
I Every client request has an integer ID
I Each client request is followed by a VSNP server response
I The VSNP server response should be even if the request ID

is odd, and vice-versa

I Assume we want to check the odd/even, even/odd
constraints

I Or we want to check the behavior of non-typical protocol
implementations or not predefined set of rules

I Or to choose what to save and how to correlate it with
future packets

Passive Testing using Network Traces

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

41/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES 101

We want to guarantee that:

I Certain functional and non-functional requirements hold
over the network traces, also known as properties (or
rules, or invariants, more on this later)

I We are able to analyze properties that go beyond single
packet analysis or simple associations

Consider the VSNP protocol and its even/odd, odd/even
property

I Let’s take a look at a potential network trace to list some
properties

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace

ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?

I As packets go through, the P.O. allows to observe n
sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?

I As packets go through, the P.O. allows to observe n
sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?

I As packets go through, the P.O. allows to observe n
sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?

I As packets go through, the P.O. allows to observe n
sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?
I As packets go through, the P.O. allows to observe n

sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?
I As packets go through, the P.O. allows to observe n

sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?

I It depends if the analysis is performed on-line or off-line

42/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS

Consider the following trace
ID:2
N:

ID:3
N:

ID:4
N:

ID:2
N: 77

ID:4
N: 89

ID:21
N:

ID:21
N: 101

Questions

I How can two requests / responses be together?
I As packets go through, the P.O. allows to observe n

sequential client(s) requests before a response arrives to the
P.O.

I What do we do with a non-replied request?
I It depends if the analysis is performed on-line or off-line

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

Actions:

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:2
N:

Tester Storing queue / Memory
ID:2
N:

Actions:
Read REQ with ID = 2

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

Actions:
Store packet in the requests to be replied queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:3
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

Actions:
Read REQ with ID = 3

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

Actions:
Store packet in the requests to be replied queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:4
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

Actions:
Read REQ with ID = 4

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Store packet in the requests to be replied queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:2
N: 77

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Read RES with ID = 2

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:2
N: 77

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Check to which stored packet it corresponds

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:2
N: 77

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Verify the property

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Report PASS (+)

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Remove corresponding stored packet from the stored requests
queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:4
N: 89

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Read RES with ID = 4

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:4
N: 89

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Check to which stored packet it corresponds

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:4
N: 89

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Verify the property

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:4
N:

Actions:
Report PASS (+)

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Remove corresponding stored packet from the stored requests
queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:21
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Read REQ with ID = 21

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:21
N:

Actions:
Store packet in the requests to be replied queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:21
N: 101

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:21
N:

Actions:
Read RES with ID = 21

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:21
N: 101

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:21
N:

Actions:
Check to which stored packet it corresponds

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

ID:21
N: 101

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:21
N:

Actions:
Verify the property

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

ID:21
N:

Actions:
Report FAIL (-)

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Remove corresponding stored packet from the stored requests
queue

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
What’s next?

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Wait. . . wait until another packet comes (live capture)

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Until when do we wait? What do we do with this left-alone
packet

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Until a determined timeout

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

Actions:
After the determined timeout, report TIME FAIL (!) and
remove packets whose time stored > timeout

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Now assume it was off-line

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

EOT
(end of trace)

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
Read EOT

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

ID:3
N:

Actions:
For each packet left on memory report ?

43/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE ON-LINE VS. OFF-LINE MONITORING VERDICTS

Incoming (or read) packets
ID:2
N:

Tester Storing queue / Memory
ID:2
N:

Actions:
Report INCONCLUSIVE (?)! (What if the trace was cut before
the packet arrived?) and delete the left packets

44/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CORRELATED NETWORK INTERACTIONS (CONT.)

Some conclusions / questions

I Given the nature of properties, matching packets cannot be
expressed by a regular language

I How do we express the properties?

I Given the network interactions, each packet can represent
a connection in any state (bad, very bad. . .)

I How to avoid resource consumption?

44/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CORRELATED NETWORK INTERACTIONS (CONT.)

Some conclusions / questions

I Given the nature of properties, matching packets cannot be
expressed by a regular language

I How do we express the properties?
I Given the network interactions, each packet can represent

a connection in any state (bad, very bad. . .)

I How to avoid resource consumption?

44/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CORRELATED NETWORK INTERACTIONS (CONT.)

Some conclusions / questions

I Given the nature of properties, matching packets cannot be
expressed by a regular language

I How do we express the properties?

I Given the network interactions, each packet can represent
a connection in any state (bad, very bad. . .)

I How to avoid resource consumption?

44/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CORRELATED NETWORK INTERACTIONS (CONT.)

Some conclusions / questions

I Given the nature of properties, matching packets cannot be
expressed by a regular language

I How do we express the properties?
I Given the network interactions, each packet can represent

a connection in any state (bad, very bad. . .)

I How to avoid resource consumption?

44/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CORRELATED NETWORK INTERACTIONS (CONT.)

Some conclusions / questions

I Given the nature of properties, matching packets cannot be
expressed by a regular language

I How do we express the properties?
I Given the network interactions, each packet can represent

a connection in any state (bad, very bad. . .)
I How to avoid resource consumption?

45/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS (CONT. 2)
Interaction

Invariants or properties

I Test purposes hold over all the observed network traces
I E.g., β6 is not allowed to occur before the occurrence of α4
I There have been proposed many languages to express

invariants

45/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS (CONT. 2)
Interaction

Invariants or properties

I Test purposes hold over all the observed network traces

I E.g., β6 is not allowed to occur before the occurrence of α4
I There have been proposed many languages to express

invariants

45/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS (CONT. 2)
Interaction

Invariants or properties

I Test purposes hold over all the observed network traces
I E.g., β6 is not allowed to occur before the occurrence of α4

I There have been proposed many languages to express
invariants

45/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

UNDERSTANDING CORRELATED NETWORK

INTERACTIONS (CONT. 2)
Interaction

Invariants or properties

I Test purposes hold over all the observed network traces
I E.g., β6 is not allowed to occur before the occurrence of α4
I There have been proposed many languages to express

invariants

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)

I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)

I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)

I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)
I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)

I Fits pretty well if assuming an interaction has a single state
(the P.O. is not situated on a server, for instance)

I Is not ideal if many states are assumed to be possible for
different connections (many sequential requests)

I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)

I Is not ideal if many states are assumed to be possible for
different connections (many sequential requests)

I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)

I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)
I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)
I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task

I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)
I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .

I Concepts behind the languages are more important. . .

46/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING PROPERTIES

Many languages have been proposed. . .

I Linear Temporal Logic (LTL)
I Describes an ω-regular language (over infinite words)
I Fits pretty well if assuming an interaction has a single state

(the P.O. is not situated on a server, for instance)
I Is not ideal if many states are assumed to be possible for

different connections (many sequential requests)
I Languages based on Context Free Grammars (CFG)

I Languages are adjusted to the task
I Examples: XML-based, or others. . .
I Concepts behind the languages are more important. . .

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets

I That is, to describe a template of each packet
Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets

I That is, to describe a template of each packet
Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets

I That is, to describe a template of each packet
Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets

I That is, to describe a template of each packet
Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets
I That is, to describe a template of each packet

Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets
I That is, to describe a template of each packet

Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

47/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS

I A property expresses a sequence of premises and
consequences of non-chronologically arranged, but related
network packets

I Example: in English, if(A) then B (before or after), or if{if
(A) then B(before or after)} then C (before or after), etc...

I A property must be able to characterize different packets
I That is, to describe a template of each packet

Example: a packet that uses TCP in the port 1010 and the
first value is an ID, etc.

I A property must be able to create relationships between
the different network packets

I That is, to describe how packet A relates to packet B
(request port is equal to response port, etc.)

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .

I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .

I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?

I Individual comparisons are performed against constants or
previous (chronological) packet values

I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values

I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets

I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet

I Hierarchical as you can see. . .

48/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT.)
How can we proceed to characterize packets and
relationships between them?

I Comparisons. . .
I Request TCP source port = response destination port?
I Individual comparisons are performed against constants or

previous (chronological) packet values
I These comparisons make relationships between packets
I A set of individual comparisons characterizes a packet

To make individual comparisons we need granular data
access

I The SYN flag of the TCP header of the i-th the packet
I Hierarchical as you can see. . .

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed

I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

49/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT.)

Granular data access is needed
I Because byte offset access is not feasible

I Example: the value of the IHL (Internet header length)
affects the offset mapping

I The communication protocol data point to other locations
(semantics of the protocol)

I Otherwise, how to refer to the TCP SYN flag inside the
TCP header of the packet?

Granular data access can be achieved with hierarchical
key-value structure of the packet

I A mapping function between the raw data bytes and the
structure is needed

50/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT. CONT.)

P packet
. . .

(TCP Header)
eb5d01bbd3e75a55cfa6
e7c0801810001cd50000

. . .

Accessing the ACK flag of
the TCP header

I Given packet P, the value
is 1 for
P->TCP->flags->ACK

50/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT. CONT.)

P packet
. . .

(TCP Header)
eb5d01bbd3e75a55cfa6
e7c0801810001cd50000

. . .

Accessing the ACK flag of
the TCP header

I Given packet P, the value
is 1 for
P->TCP->flags->ACK

50/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT. CONT.)

P packet
. . .

(TCP Header)
eb5d01bbd3e75a55cfa6
e7c0801810001cd50000

. . .

Accessing the ACK flag of
the TCP header

I Given packet P, the value
is 1 for
P->TCP->flags->ACK

50/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING WITH NETWORK TRACES

CONCEPTS (CONT. CONT. CONT.)

P packet
. . .

(TCP Header)
eb5d01bbd3e75a55cfa6
e7c0801810001cd50000

. . .

Accessing the ACK flag of
the TCP header

I Given packet P, the value
is 1 for
P->TCP->flags->ACK

51/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING INVARIANTS

Without a “formal” language

I For each response with an even number a “corresponding”
request with an odd ID should have been received

I Example:

if RES
(

RES->TCP->srcP = 1010 &
RES->VSNP->Num % 2 = 0 &
RES->IP->srcIP = REQ->IP->dstIP &
REQ->VSNP->ID = RES->VSNP->ID &
REQ->VSNP->ID %2 != 0

) then REQ<RES
(

REQ->VSNP->Num = NULL
)

51/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING INVARIANTS

Without a “formal” language

I For each response with an even number a “corresponding”
request with an odd ID should have been received

I Example:

if RES
(

RES->TCP->srcP = 1010 &
RES->VSNP->Num % 2 = 0 &
RES->IP->srcIP = REQ->IP->dstIP &
REQ->VSNP->ID = RES->VSNP->ID &
REQ->VSNP->ID %2 != 0

) then REQ<RES
(

REQ->VSNP->Num = NULL
)

51/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXPRESSING INVARIANTS

Without a “formal” language

I For each response with an even number a “corresponding”
request with an odd ID should have been received

I Example:

if RES
(

RES->TCP->srcP = 1010 &
RES->VSNP->Num % 2 = 0 &
RES->IP->srcIP = REQ->IP->dstIP &
REQ->VSNP->ID = RES->VSNP->ID &
REQ->VSNP->ID %2 != 0

) then REQ<RES
(

REQ->VSNP->Num = NULL
)

52/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

WHY IS THIS NOT COMMERCIAL / WIDESPREAD?

Resource intensive!!! The industry lost interest. . .

What if I could identify a subset of properties to check at the
current execution point?..

How?

An idea: model the protocol as an FSM to identify its states?

52/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

WHY IS THIS NOT COMMERCIAL / WIDESPREAD?
Resource intensive!!! The industry lost interest. . .

What if I could identify a subset of properties to check at the
current execution point?..

How?

An idea: model the protocol as an FSM to identify its states?

52/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

WHY IS THIS NOT COMMERCIAL / WIDESPREAD?
Resource intensive!!! The industry lost interest. . .
What if I could identify a subset of properties to check at the
current execution point?..

How?

An idea: model the protocol as an FSM to identify its states?

52/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

WHY IS THIS NOT COMMERCIAL / WIDESPREAD?
Resource intensive!!! The industry lost interest. . .
What if I could identify a subset of properties to check at the
current execution point?..

How?

An idea: model the protocol as an FSM to identify its states?

52/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

WHY IS THIS NOT COMMERCIAL / WIDESPREAD?
Resource intensive!!! The industry lost interest. . .
What if I could identify a subset of properties to check at the
current execution point?..

How?
An idea: model the protocol as an FSM to identify its states?

53/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE SIMPLE CONNECTION PROTOCOL (SCP)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Used to transmit data from one entity (called the upper layer)
to the other (called the lower layer)

53/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE SIMPLE CONNECTION PROTOCOL (SCP)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Used to transmit data from one entity (called the upper layer)
to the other (called the lower layer)

53/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE SIMPLE CONNECTION PROTOCOL (SCP)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

It starts with a QoS negotiation phase, the sending entity
proposes the level, the receiving decides

53/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE SIMPLE CONNECTION PROTOCOL (SCP)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Then, the transmitting entity attempts connecting to the
receiving one (up to 3 times)

53/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

THE SIMPLE CONNECTION PROTOCOL (SCP)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

After a successful connection, the transmitting entity sends
data, the receiving entity acknowledges

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:

I An acknowledgment is always sent after transmitting data
I After a successful connection a reset is sent
I Only relevant properties to the current execution state!

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:
I An acknowledgment is always sent after transmitting data

I After a successful connection a reset is sent
I Only relevant properties to the current execution state!

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:
I An acknowledgment is always sent after transmitting data

Why to check for data packets when the connection has
not been even established?

I After a successful connection a reset is sent
I Only relevant properties to the current execution state!

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:
I An acknowledgment is always sent after transmitting data
I After a successful connection a reset is sent

I Only relevant properties to the current execution state!

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:
I An acknowledgment is always sent after transmitting data
I After a successful connection a reset is sent

Why to check for connection requests/replies if no QoS
level has been agreed on?

I Only relevant properties to the current execution state!

54/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

CHECKING SCP PROPERTIES. . .

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

Assume we want to check that:
I An acknowledgment is always sent after transmitting data
I After a successful connection a reset is sent
I Only relevant properties to the current execution state!

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉

I S is a finite nonempty set
of states with a non-empty
subset S′

of initial states
I I and O are finite input and

output alphabets
I hs ⊆ S× I ×O× S is a

behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉
I S is a finite nonempty set

of states with a non-empty
subset S′

of initial states

I I and O are finite input and
output alphabets

I hs ⊆ S× I ×O× S is a
behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉
I S is a finite nonempty set

of states with a non-empty
subset S′

of initial states
I I and O are finite input and

output alphabets

I hs ⊆ S× I ×O× S is a
behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉
I S is a finite nonempty set

of states with a non-empty
subset S′

of initial states
I I and O are finite input and

output alphabets
I hs ⊆ S× I ×O× S is a

behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉
I S is a finite nonempty set

of states with a non-empty
subset S′

of initial states
I I and O are finite input and

output alphabets
I hs ⊆ S× I ×O× S is a

behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

55/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FINITE STATE MACHINE (FSM)

Do you remember?..
An FSM is a 5-tuple
M = 〈S, I,O, hs,S

′〉
I S is a finite nonempty set

of states with a non-empty
subset S′

of initial states
I I and O are finite input and

output alphabets
I hs ⊆ S× I ×O× S is a

behavior relation

s1 s2

i1/o1

i2/o2

i1/o1

i1/o1, o3

S′
= {s1}

FSM
i1i2i1. . . o1o2o3. . .

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters
I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables

I Input and output
parameters

I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters

I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters
I Predicates

I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters
I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters
I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

56/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

EXTENDED FSM (EFSM)

EFSM augments an FSM
with

I Context variables
I Input and output

parameters
I Predicates
I Update functions

A transition is executed if the
corresponding predicate is true

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

i and o can have parameters
Context variables are updated
when a transition is executed
Predicates allow to execute the
transition if it is true

57/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PROPERTIES OF AN FSM M = 〈S, I,O, hs,S
′〉

An FSM can be

I deterministic if for each pair (s, i) ∈ S× I there exists at most
one pair (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hs, otherwise
M is nondeterministic

I complete if for each (s, i) ∈ S× I there exists (o, s′) ∈ O× S
such that (s, i, o, s′) ∈ hs, otherwise M is partial

I observable if for each triple (s, i, o) ∈ S× I ×O there exist at
most one state s′ ∈ S such that (s, i, o, s′) ∈ hs, otherwise M
is nonobservable

This is a partial, nondeterministic and nonobservable
FSM

s1 s2i1/o1

i2/o2

i1/o1

i1/o1, o3

57/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PROPERTIES OF AN FSM M = 〈S, I,O, hs,S
′〉

An FSM can be
I deterministic if for each pair (s, i) ∈ S× I there exists at most

one pair (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hs, otherwise
M is nondeterministic

I complete if for each (s, i) ∈ S× I there exists (o, s′) ∈ O× S
such that (s, i, o, s′) ∈ hs, otherwise M is partial

I observable if for each triple (s, i, o) ∈ S× I ×O there exist at
most one state s′ ∈ S such that (s, i, o, s′) ∈ hs, otherwise M
is nonobservable

This is a partial, nondeterministic and nonobservable
FSM

s1 s2i1/o1

i2/o2

i1/o1

i1/o1, o3

57/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PROPERTIES OF AN FSM M = 〈S, I,O, hs,S
′〉

An FSM can be
I deterministic if for each pair (s, i) ∈ S× I there exists at most

one pair (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hs, otherwise
M is nondeterministic

I complete if for each (s, i) ∈ S× I there exists (o, s′) ∈ O× S
such that (s, i, o, s′) ∈ hs, otherwise M is partial

I observable if for each triple (s, i, o) ∈ S× I ×O there exist at
most one state s′ ∈ S such that (s, i, o, s′) ∈ hs, otherwise M
is nonobservable

This is a partial, nondeterministic and nonobservable
FSM

s1 s2i1/o1

i2/o2

i1/o1

i1/o1, o3

57/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PROPERTIES OF AN FSM M = 〈S, I,O, hs,S
′〉

An FSM can be
I deterministic if for each pair (s, i) ∈ S× I there exists at most

one pair (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hs, otherwise
M is nondeterministic

I complete if for each (s, i) ∈ S× I there exists (o, s′) ∈ O× S
such that (s, i, o, s′) ∈ hs, otherwise M is partial

I observable if for each triple (s, i, o) ∈ S× I ×O there exist at
most one state s′ ∈ S such that (s, i, o, s′) ∈ hs, otherwise M
is nonobservable

This is a partial, nondeterministic and nonobservable
FSM

s1 s2i1/o1

i2/o2

i1/o1

i1/o1, o3

57/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PROPERTIES OF AN FSM M = 〈S, I,O, hs,S
′〉

An FSM can be
I deterministic if for each pair (s, i) ∈ S× I there exists at most

one pair (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hs, otherwise
M is nondeterministic

I complete if for each (s, i) ∈ S× I there exists (o, s′) ∈ O× S
such that (s, i, o, s′) ∈ hs, otherwise M is partial

I observable if for each triple (s, i, o) ∈ S× I ×O there exist at
most one state s′ ∈ S such that (s, i, o, s′) ∈ hs, otherwise M
is nonobservable

This is a partial, nondeterministic and nonobservable
FSM

s1 s2i1/o1

i2/o2

i1/o1

i1/o1, o3

58/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FROM AN EFSM TO AN FSM

EFSM FSM

I Deleting context variables and predicates that significantly
depend on them (Context-free Slice)

EFSM

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

FSM

s1 s2

s3

T1:req / nosupport
T2: conn,data / err
T3: reset / abort

T4:req / support

T5:conn/ refuse
T6: req,data / err

T8:conn / abort
T9: reset / abort

T7:conn / accept

T10:data/ ack
T11:req, conn / err

T12:reset / abort

58/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FROM AN EFSM TO AN FSM

EFSM FSM

I Deleting context variables and predicates that significantly
depend on them (Context-free Slice)

EFSM

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

FSM

s1 s2

s3

T1:req / nosupport
T2: conn,data / err
T3: reset / abort

T4:req / support

T5:conn/ refuse
T6: req,data / err

T8:conn / abort
T9: reset / abort

T7:conn / accept

T10:data/ ack
T11:req, conn / err

T12:reset / abort

58/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

FROM AN EFSM TO AN FSM

EFSM FSM

I Deleting context variables and predicates that significantly
depend on them (Context-free Slice)

EFSM

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

FSM

s1 s2

s3

T1:req / nosupport
T2: conn,data / err
T3: reset / abort

T4:req / support

T5:conn/ refuse
T6: req,data / err

T8:conn / abort
T9: reset / abort

T7:conn / accept

T10:data/ ack
T11:req, conn / err

T12:reset / abort

59/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

HOMING SEQUENCE (HS)

I The sequence α
allows to
conclude about
the final state s′i
trough the
observation of βi
(the output
reaction)

I After applying α
at any state si ∈ S
the final state s′i
becomes known,
depending on the
observed βi

I α is a homing
sequence

s1 s2 . . . sn

s′1 s′2 s′′2 s′3

α/β1 α/β2 α/β3 α/βi

If βi = βj =⇒ s′i = s′j (For observable
FSMs)

59/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

HOMING SEQUENCE (HS)
I The sequence α

allows to
conclude about
the final state s′i
trough the
observation of βi
(the output
reaction)

I After applying α
at any state si ∈ S
the final state s′i
becomes known,
depending on the
observed βi

I α is a homing
sequence

s1 s2 . . . sn

s′1 s′2 s′′2 s′3

α/β1 α/β2 α/β3 α/βi

If βi = βj =⇒ s′i = s′j (For observable
FSMs)

59/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

HOMING SEQUENCE (HS)
I The sequence α

allows to
conclude about
the final state s′i
trough the
observation of βi
(the output
reaction)

I After applying α
at any state si ∈ S
the final state s′i
becomes known,
depending on the
observed βi

I α is a homing
sequence

s1 s2 . . . sn

s′1 s′2 s′′2 s′3

α/β1 α/β2 α/β3 α/βi

If βi = βj =⇒ s′i = s′j (For observable
FSMs)

59/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

HOMING SEQUENCE (HS)
I The sequence α

allows to
conclude about
the final state s′i
trough the
observation of βi
(the output
reaction)

I After applying α
at any state si ∈ S
the final state s′i
becomes known,
depending on the
observed βi

I α is a homing
sequence

s1 s2 . . . sn

s′1 s′2 s′′2 s′3

α/β1 α/β2 α/β3 α/βi

If βi = βj =⇒ s′i = s′j (For observable
FSMs)

59/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

HOMING SEQUENCE (HS)
I The sequence α

allows to
conclude about
the final state s′i
trough the
observation of βi
(the output
reaction)

I After applying α
at any state si ∈ S
the final state s′i
becomes known,
depending on the
observed βi

I α is a homing
sequence

s1 s2 . . . sn

s′1 s′2 s′′2 s′3

α/β1 α/β2 α/β3 α/βi

If βi = βj =⇒ s′i = s′j (For observable
FSMs)

60/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DERIVING ALL (NON-REDUNDANT) HS OF LENGTH l

I Derive a Truncated
Successor Tree (TST)
∃o ∈ ((s1, ij, o, s

′
1) ∈ hs&

(s2, ij, o, s
′
2) ∈ hs&

(s3, ij, o, s
′
3) ∈ hs. . .)

I Truncating rules

I Rule 1 The node P has
only singletons

I Rule 2 The depth of the
node P is greater than l

s1, s2, ..., sn

.

s′1, s
′
2, .., s

′
x, s′′1 , s

′′
2 , .., s

′′
y

.

i1
ij

im

α is a homing sequence iff it
labels the path truncated by

Rule 1

60/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DERIVING ALL (NON-REDUNDANT) HS OF LENGTH l

I Derive a Truncated
Successor Tree (TST)
∃o ∈ ((s1, ij, o, s

′
1) ∈ hs&

(s2, ij, o, s
′
2) ∈ hs&

(s3, ij, o, s
′
3) ∈ hs. . .)

I Truncating rules

I Rule 1 The node P has
only singletons

I Rule 2 The depth of the
node P is greater than l

s1, s2, ..., sn

.

s′1, s
′
2, .., s

′
x, s′′1 , s

′′
2 , .., s

′′
y

.

i1
ij

im

α is a homing sequence iff it
labels the path truncated by

Rule 1

60/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DERIVING ALL (NON-REDUNDANT) HS OF LENGTH l

I Derive a Truncated
Successor Tree (TST)
∃o ∈ ((s1, ij, o, s

′
1) ∈ hs&

(s2, ij, o, s
′
2) ∈ hs&

(s3, ij, o, s
′
3) ∈ hs. . .)

I Truncating rules
I Rule 1 The node P has

only singletons

I Rule 2 The depth of the
node P is greater than l

s1, s2, ..., sn

.

s′1, s
′
2, .., s

′
x, s′′1 , s

′′
2 , .., s

′′
y

.

i1
ij

im

α is a homing sequence iff it
labels the path truncated by

Rule 1

60/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DERIVING ALL (NON-REDUNDANT) HS OF LENGTH l

I Derive a Truncated
Successor Tree (TST)
∃o ∈ ((s1, ij, o, s

′
1) ∈ hs&

(s2, ij, o, s
′
2) ∈ hs&

(s3, ij, o, s
′
3) ∈ hs. . .)

I Truncating rules
I Rule 1 The node P has

only singletons
I Rule 2 The depth of the

node P is greater than l

s1, s2, ..., sn

.

s′1, s
′
2, .., s

′
x, s′′1 , s

′′
2 , .., s

′′
y

.

i1
ij

im

α is a homing sequence iff it
labels the path truncated by

Rule 1

60/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

DERIVING ALL (NON-REDUNDANT) HS OF LENGTH l

I Derive a Truncated
Successor Tree (TST)
∃o ∈ ((s1, ij, o, s

′
1) ∈ hs&

(s2, ij, o, s
′
2) ∈ hs&

(s3, ij, o, s
′
3) ∈ hs. . .)

I Truncating rules
I Rule 1 The node P has

only singletons
I Rule 2 The depth of the

node P is greater than l

s1, s2, ..., sn

.

s′1, s
′
2, .., s

′
x, s′′1 , s

′′
2 , .., s

′′
y

.

i1
ij

im

α is a homing sequence iff it
labels the path truncated by

Rule 1

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

The resulting set of HSs of length l = 2
{(req.reset), (req.conn), (req.data), (reset), (data.rec), (data.conn),
data.reset), (conn.req), (conn.data), (conn.reset)}

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

61/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

APPLYING STATE IDENTIFICATION TO SCP

Let’s assume α = (req.conn)

I If β ∈
{(nosupport.err), (err.abort)},
then current state is s1,
check no properties

I If β ∈
{(support.refuse), (err.refuse)},
then current state is s2,
check for req/conn

I Else current state is s3
check for data/ack +
reset/abort (small heuristic)

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)
QoSOut := QoS
T2: conn,data(size, value) / err
T3: reset / abort

T4:req(QoS) /
support(QoSOut)
ConnQoS := QoS
QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail = 0
/ refuse
TryCount := TryCount + 1
T6: req(QoS),data(size, value) / err

T8:conn, TryCount ≥ 2 / abort
TryCount := 0; ConnQoS := 0;
DataCount := 0
T9: reset / abort TryCount :=
0; ConnQoS := 0;
DataCount := 0 T7:conn, TryCount < 2

& SysAvail = 1 / accept
(QoSOut)

T10:data(size, value) /
ack(DataCountOut)
DataCount := DataCount + size
DataCountOut := DataCount
T11:req(QoS), conn / err

T12:reset / abort
TryCount := 0;
ConnQoS := 0;
DataCount := 0

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!

I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)

I Can be chosen by experimental evaluation

62/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

STATE IDENTIFICATION FOR NETWORK TRACE

ANALYSIS — FINAL REMARKS

What if the TST up to the length l does not contain a HS?..

I Continue with your TST with l = l + 1

I Or perhaps not. . . If ∀S′
j ∈ SHs, |S

′ | >> |S′
i |

S′

.

{S′
1,S

′
2, ..., s

′

k} = SHs

.

i1
ij

im

Only check properties for the identified subset!

What sequences to choose?

I Sequences that are frequent to observe!
I Sequences that follow the protocol flow, e.g., not (conn.req)
I Can be chosen by experimental evaluation

63/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES – FINAL

REMARKS

I Very useful when: no access to the code is possible, real
data analysis is desirable, the system cannot be influenced
by test cases

I It can be computationally expensive, but techniques to
reduce the complexity are being actively studied

I The approach was presented with network traces, but it
can be applied to passive testing of other
software/hardware (embedded) systems

63/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES – FINAL

REMARKS

I Very useful when: no access to the code is possible, real
data analysis is desirable, the system cannot be influenced
by test cases

I It can be computationally expensive, but techniques to
reduce the complexity are being actively studied

I The approach was presented with network traces, but it
can be applied to passive testing of other
software/hardware (embedded) systems

63/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES – FINAL

REMARKS

I Very useful when: no access to the code is possible, real
data analysis is desirable, the system cannot be influenced
by test cases

I It can be computationally expensive, but techniques to
reduce the complexity are being actively studied

I The approach was presented with network traces, but it
can be applied to passive testing of other
software/hardware (embedded) systems

63/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

PASSIVE TESTING USING NETWORK TRACES – FINAL

REMARKS

I Very useful when: no access to the code is possible, real
data analysis is desirable, the system cannot be influenced
by test cases

I It can be computationally expensive, but techniques to
reduce the complexity are being actively studied

I The approach was presented with network traces, but it
can be applied to passive testing of other
software/hardware (embedded) systems

64/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

Future work / Conclusions

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing

I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing

I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)

I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)
I Through simplifying the checking algorithms

I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)
I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)
I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

65/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

RESEARCH OPPORTUNITIES / FUTURE WORK

Static Code Analysis

I Reducing the complexity when analyzing
I New methods / Heuristics

I New analysis approaches using different algebraic
structures

Passive Testing using Network Traces

I Reducing the complexity when checking properties2 (!)
I Through simplifying the checking algorithms
I Through minimizing the number checks :)

I Considering:
Synchronizing distributed traces. . .
Encrypted protocol testing. . .

I Developing efficient tools. . .

66/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

END

Thank you for your attention!

67/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

Q&A / SOME CLARIFICATIONS

Ariadna Barinova from ITMO asked about the applicability
of static code analysis to scripting languages

In the example, we saw how static analysis can be used
for sign analysis and detected a negative array index. For
scripting languages this is not important as array indexes can
be anything they are not the offset of a memory address.
However, sign analysis can reveal errors in the code, e.g., a
function that should guarantee a positive return value does not,
etc. Furthermore, many other analyses can be useful, like the
live variables analysis to detect potential waste of resources,
etc. I hope the explanation was clear during the presentation,
or at least it is now :)

68/68

INTRODUCTION STATIC CODE ANALYSIS NETWORK TRACE ANALYSIS CONCLUSION

Q&A / SOME CLARIFICATIONS (2)

Natalia Kushik from Télécom SudParis pointed out the fact
that the extended finite state machine under experiment
to obtain a homing sequence had an initial state

In fact, as she correctly pointed out, if the initial state is
known, there is no need for the entire experiment. My intention
was to show a communication protocol description; this
protocol description has an initial state in fact. However, it is
theoretically incorrect depict an initial state when performing
the state identification experiment. These slides were corrected
and updated taking this into consideration.

Thank you, Natalia :)

	Motivation and Introduction
	

	Static Code Analysis
	Network Trace Analysis
	

	Future Work / Conclusions

