Complete Controllable Distributed
Testing

R. M. Hierons

Brunel University London, UK

rob.hierons@brunel.ac.uk

http://people.brunel.ac.uk/~csstrmh

TAROT 2016

Challenges in Testing

 These include:
— Scale
— Concurrency
— Distribution

— The Oracle Problem (checking test output).

* Currently expensive, error-prone, mainly manual.
* Possible solution: model-based testing.

Formal languages used

* Typically have states and transitions between
states triggered by actions.

* Many based on one of:
— Finite state machines (FSMs)

— Labelled transition systems (LTSs)

* Tools might translate models to either FSMs
or LTSs.

Assumptions

— Usually we only observe interactions between the
system under test (SUT) and its environment -
black-box testing.

— To reason about test effectiveness we assume:

* The behaviour of the SUT can be expressed in the same
language as the model.

— This allows us to define implementation relations
between models.

Finite State Machines and MBT

Finite State Machines

* The behaviour of M in state s, is defined by the
(regular) set of input/output sequences (traces) from s,

b/ | |40 a/l

Implementation relations

* Assuming all models are completely-specified,
these are:

— Equivalence for deterministic FSMs.
— Language inclusion for nondeterministic FSMs.

* There are efficient algorithms for deciding these
properties, so:
— If we know that the SUT behaves like FSM N and we

have specification FSM M then we can determine
whether N conforms to M.

e We will focus on: deterministic FSMis.

Fault Domains

* A set of models that represent potential
behaviours of the system.

e Standard fault domains for testing from an
FSM M with n states:

— The SUT behaves like an unknown FSM N with at
most n states.

— The SUT behaves like an unknown FSM N with at
most m states (some m>n).

Complete test suites

* A testsuite T is m-complete when testing against
M if:
— For every FSM N with no more than m states, if N

does not conform to M then there is a test sequence
in T that demonstrates this.

* Implicit: fixed input and output alphabets.

e |f the SUT satisfies these conditions then such a
test suite determines correctness:

— |f the SUT passes the test suite then either it is correct
or has more than m states.

Existence of m-complete test suites

* We can produce an m-complete test suite:

— For each FSM N with no more than m states we:
* Determine whether N conforms to specification M.

 If N does not conform to M then we add a test
sequence that demonstrates this.

* These steps are computable (and there are
finitely many FSMs to consider).

Smaller test suites

 There are more efficient algorithms.

 Many build test sequences from ‘parts’ that:
— Reach a state s.

— Distinguish two states s and s’ (or distinguish
every pair of states).

* For deterministic FSMs these ‘parts’ can be
produced in low-order polynomial time.

Summary: using a single tester

* For (deterministic) FSM specification M:

— We can efficiently decide whether an observation
is allowed by M (the Oracle Problem).

— We can efficiently produce tests to reach states or
distinguish states.

— We can efficiently decide whether an FSM N
conforms to M.

— We can generate an m-complete test suite for M.

Distributed Testing

The Architecture

Tester 1

\SUT/

Tester 3 /

Tester 2

Distributed testing

e We have:

— An SUT that interacts with its environment at
physically distributed interfaces (ports).

— A tester at each port.

 Will focus on the case where:

— The testers do not interact with one another during
testing and there is no global clock.

— The testers log their observations and logs are
combined after testing.

Consequences

* Each tester observes only the sequence of
interactions (local trace) at its port

Tester 1 SUT Tester 2

s

Ve

* The tester at port 1 observes x,y,x,y, and the tester
at port 2 observes y, only.

What the testers observe

* Given global trace z, the tester at p observes a
local trace 7 (2).

Tester 1 Tester 2
~ X1
Y1
e \YA‘
~ X1
Y

Controllability problems

* This test has a controllability problem:
introduces nondeterminism into testing.

tester SUT tester

Observability problems

* The following look the same

tester Spec tester tester SUT tester

XA XA
% 2 Ay/

* Testers/users cannot ‘map’ output to input

Equivalent global traces

* Since we only observe local traces:

— Global traces z and z” are indistinguishable if their
projections are identical: the local traces are the
same. We denote this: z~2’

2~ 2 S VpePao,(z) =m(2)

* The following are equivalent under ~
xl/(yl,yz)xl/(yl,-)
X1/ (y1,-)x1/ (Y, V)

* Both have x,y,x,y, at port 1 and y, at 2.

A simple output fault

* Input x, detects the fault.

tester SUT tester tester Spec tester
\ \
Y4 Y
N‘

Test effectiveness is not monotonic

* However: x,x, does not detect the fault.

tester SUT tester tester Spec tester

TR

T
e

X

\1*

.y/

\)’2‘

Using an external network

* Sometimes we can overcome controllability
and observability problems.

tester SUT

\
/

tester

—)

tester SUT

\
L

tester

Distributed Testing and
Deterministic Finite State Machines

An allowed behaviour

e Given specification M, a trace o is allowed if

do' € L(M).c" ~ o

An implementation relation for
distributed systems

* We say that FSM N conforms to FSM M if:

— Every global trace of N is indistinguishable from a global
trace of M.

Vo € L(N)3do' € L(M).0c" ~ 0o

The language defined by an FSM

 With distributed observations, this is:
L(M)={c'|doc € L(M).0c' ~ o}
* So, a behaviour is correct if

o€ L(M)

* N conforms to M if and only if
L(N) € L(M)

The language need not be regular

* The following ‘cheats’ — does not have any
Inputs.

e Clearly, L(M) is not regular.

The language need not be regular

* Following shows this (take the intersection
with {z7 H{x3}).

XYY \/ Xi1/(¥1> ¥2)

X/(Y1> ¥2)

YY) S L
X/ (Y1, Y 2) S3 S4 2P

The Oracle Problem in Distributed
Testing

We observe projections
O1y...,0m

We want to know whether the following holds:
do € L(M)Np € Pmy(o) =0,

Essentially, a membership problem.
O1...0m € L(M)

It is decidable, since we could:
— Form all interleavings of the projections.

— For each such global trace, determine whether the global trace is allowed by
the specification.

This leads to a combinatorial explosion.

Solving the Oracle Problem

* We observe projections o1,...,0m

 We can form a finite automata whose
language is the set of corresponding global
traces (the oracle problem is then FA
intersection).

* A stateis a vector whose ith component is the
latest event from o;

Example

 Two ports, local traces aa’, b.

How this works (1)

We define a partial order < oneventsin 0:a<a’if
(from the observations) we know that a must have
been before a’.

In this case:

— Two events are related iff they are at the same port.
Important property:

— For a to occur we must have all events before a (under <).

— Downwardly closed sets correspond to sets of events that
can form a prefix of a trace equivalent to O.

Note — label events to make them unique if required.

How this works (2)

* We can also construct the FA as:
— States are downwardly closed sets of event.
— {}is the initial state
— The complete set of events is the final state.

— There is a transition from set E to set E’ with event
eiff {e}=E" \E.

* The number of states of the FA is the product
of the lengths of the 7; (plus 1)

* So, exponential space is required.

* However, polynomial time if m is bounded
above.

Results

For single port: Oracle Problem can be solved in low order
polynomial time.

For DFSMs in distributed testing:

* Can be solved in polynomial time for controllable test
sequences; otherwise NP-complete.

For NFSMs:
* NP-complete even for controllable testing.

However, problems become polynomial if we place bounds
on the number of ports.

Distinguishing states and FSMs

* Let us suppose that:
— M is the specification
— N models a potential (and possibly faulty)
implementation

e We want to know whether N conforms to M.

* Equivalently, we want to know whether two
states can be distinguished.

Independent testers

Tester 1
\ / Tester 2
SUT

Tester 3 /

 We have separate, independent, testers.

* At any point:
— The FSM being tested has a current state.
— Each local tester has observed a local trace.

* There are infinitely many possible
combinations of the above.

Single port systems

 We can represent this as a two player game
problem.

— The state of the game is a pair of states
(specification, implementation).

— Tester moves: apply input

— System moves: change state and return output.

* One player (the tester) wants to force the
observation of a failure.

Distinguishing FSMs: result

e Similar to a multi-player game problem.

* |tis undecidable whether N conforms to M
(and so also whether N is faulty).

* Consequence: there is no general algorithm
for generating finite m-complete test suites
for distributed testing.

Controllable testing

This is not controllable

tester SUT tester

Examples of controllability

e Two controllable scenarios

tester Spec tester tester Spec tester
\ \

\
\ X

What makes an input sequence
controllable?

* |n controllable testing:

— We can follow the input of x in state s by input x’
if:
e x and x” are at the same port; or
* input X’ is at a port p that receives output in response
to x.
— The first case relies on the atomicity of input/
output pairs.

Distinguishing states s and s’

* If we restrict to controllable testing we need:

— (input sequence) x causes no controllability problems from
sandys’.

— x leads to different sequences of interactions, for s and s’,
at some port.

 We say that x locally s-distinguishes s and s’.

* If no input sequence locally distinguishes s and s’
they are locally s-equivalent.

Testing is weaker

— We cannot locally s-distinguish s, and s, but
XX, can distinguish them.

Xy/(-, Y5)

s,

Xl/(YD')

X2/ (YI ” Y2)

Xy/(-, ¥5)

Distinguishing two states

Given port p and states s, and s, of a k-port FSM M
with n states:

— s, and s, are locally s-distinguishable by an input sequence
starting at p if and only if they are locally s-distinguished
by some such input sequence of length at most k(n-1).

This bound is tight.

The sequences can be found in low-order polynomial
time.

Complete testing

e We know that:

— There is no general algorithm for computing m-
complete test suites.

— There are benefits to using controllable test
sequences.

* We might:

— Try to achieve ‘as much as possible’ given that
testing is controllable.

c(m)-complete test suites

* Given FSM M we say that test suite T is c(m)-
complete if:

— All test sequences in T are controllable.

— For every FSM N with the same input/output
alphabets as M and at most m states:

* If N and M are locally s-distinguishable then some test
sequence in T achieves this.

* j.e. T distinguishes between M and an SUT
with at most m states if this is possible in
controllable distributed testing.

Generating c(m)-complete test
suites

Restricting attention to controllable
test sequences

 We would like to represent the set of
controllable test sequences.

 We will use a partial FSM to do this.

Copies of states

* Let us suppose that:
— tis the transition (s’,s,x/y).

— P is the set of ports involved (p is in P if x is at p and/
or y contains output at p).

 We will represent the situation ‘after t’ by state:
SP
* The state s® denotes the situation in which:

— The FSM is in state s and can receive input at any port
in P in controllable testing.

Transitions leaving a ‘new state’

* Let us suppose that:
—t is the transition (s,s’,x/y).

* We will include a copy of t from every state of the
form sP such that:

* |nput xisataportinP.

— We also include an initial state (initial state of
M, input at any port).

— The combination defines the FSM M _._

z2/(—,y2) x2/(y1,92)

r1/(y1,Y2)

TAROT 2016

z1/(y1,—)

(ot

€z /(_7) €T /(9_)
851,2} 1 Y2 >8i1,2} 1/(Y1 >81
z2/(—,y2) 21/ (y1,2) z2/(Y1,Y2)
z2/(—y2)
~ ~ ZL'Q/(—, 2) Q
ng} 8;1,2} Y >s§2
x2/(y1’y2) xl/(_va)
8
z2/(Y1,Y2)

TAROT 2016

Results

* A pathin M with labelo is controllable if and
only if M_. has a path with label O.

* So: M. captures ‘controllable testing’

Canonical FSMs

e Given FSM M, we can find:

— Minimal M_._ that is locally s-equivalent to M.

— Maximal (nondeterministic) M, that is locally s-
equivalent to M (adding ‘chaos state’ to complete
M

min)‘

 We can find them efficiently.

Relevance of max and min machines

* Machine M_. captures all of the traces that
FSM N has to implement to conform to M
(under s-equivalence).

e Machine M__. contains all of the traces that

MaXx

an SUT can have without being distinguishable
from M in controllable testing:

— We can examine M__, to determine whether it is

acceptable to restrict attention to controllable
test cases.

Reaching states

e State s of M is reachable in controllable
testing if and only if:

— There is some P such that sP is reachable in M-

* Decidable in polynomial time.

Distinguishing states

* We have that s’ and s{ are distinguishable in
controllable testing if and only if:

—Thereis a port p € P N P’ and input sequence x
starting at psuch that x s-distinguishes S1and S2.

* Decidable in polynomial time.

Comparing FSMs

* FSM N is locally s-equivalent to FSM M if and
only if N_. is equivalentto M_. .

* FSM N is locally s-equivalent to FSM M if and
only if N'is a reduction of M__..

* Both decidable in polynomial time.

Refinement and Testing

FSM M > FSMM__

s-equivalence \ / reduction

Implementation N

Generating a c(m)-complete test suite

* |tis now straightforward:

— We generate an m-complete test suite from
partial FSM M. .

* Oor
— We generate an m-complete test suite from
nondeterministic FSM M___..
* There are standard algorithms that can be
adapted (e.g. using state counting).

Efficiency issue

* Many test generation methods use:
— Sets of pairwise distinguishable states.

e Size of test suite depends on how large these
are.

Graphs and cliques

* Given an undirected graph G=(V,E) we can
generate an FSM M as follows:

— Each vertex v, in Vis represented by a
corresponding state s. of M.

— We can distinguish states s; and s; if and only if
there is an edge between v; and v..

* Consequence:

— Finding a maximal set of pairwise distinguishable
states of M is equivalent to finding a maximal
clique of G.

Consequence

* The problem of finding largest sets of pairwise
distinguishable states is NP-hard.

 There are potential efficiency issues.
* Note:

— This result also holds for single-port testing from a
nondeterministic FSM or a partial FSM.

Some papers (FSMs)

B. Sarikara and G. Von Bochmann, Synthesis and Specification Issues in Protocol
Testing, IEEE Transactions on Communications, 32 4, pp. 389-395: 1984.

R. Dssouli and G. von Bochmann. Error detection with multiple observers, Protocol
Specification, Testing and Verification V, pp. 483-494: 1985.

R. Dssouli and G. von Bochmann,. Conformance testing with multiple observers,
Protocol Specification, Testing and Verification VI, pp. 217-229: 1986.

R. M. Hierons and H. Ural. The effect of the distributed test architecture on the
power of testing, The Computer Journal, 51 4, pp. 497-510: 2008.

R. M. Hierons: Canonical Finite State Machines for Distributed Systems, Theoretical
Computer Science, 411 2, pp. 566-580: 2010.

R. M. Hierons: Verifying and Com;lgaring Finite State Machines for Systems that
98\1/3 Distributed Interfaces, IEEE Transactions on Computers, 62 8, pp. 1673-1683,

R. M. Hierons: Oracles for Distributed Testing, IEEE Transactions on Software
Engineering, 38 3, pp. 629-641, 2012.

R. M. Hierons: Generating Complete Controllable Test Suites for Distributed
Testing, IEEE Transactions on Software Engineering, 41 3, pp. 279-293, 2015.

R. M. Hierons and Uraz C. Turker: Distinguishing Sequences for Distributed Testing:
Adaptive Distinguishing Sequences, The Computer Journal (to appear).

Thanks

 Many people have contributed through
discussions and collaboration, including:
— Ana Cavalcanti, Haitao Dan, Christophe Gaston,

Marie-Claude Gaudel, Pascale Le Gall, Mercedes
Merayo, Manuel Nunez, Uraz Turker, Hasan Ural,

Husnu Yenigun.

 The work was partially funded by the EU
under the TAROT network.

Conclusions

If a system has distributed interfaces/ports
then we have different implementation

relations.
This can affect testing and also development.

We have new notions of correctness and
corresponding test generation algorithms.

Restricting attention to controllable test
sequences brings practical benefits.

Questions?

