Combining Model-Based Testing

and Machine Learning

Roland GROZ
Université Grenoble Alpes (COMUE),

LIG (Laboratoire d’Informatique de Grenoble)
France

ol

' . INP
TAROT Summer School 2016)

//

" J
In a nutshell: -

m Model-based testing... x

m when writing a model is not an option !

Testing a system is somehow LEARNING
the behaviour of a system

Problem: test orderly to learn correct &
“‘complete” behaviour

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

" S
Soft. Engineering trends

= MDE & MBT \ROT ©
v..uuedded)

1 Growing trend in some industries (e._"
1 Derive design, code and tests (MBT)
"1 Models = 1st class citizens

m Non formal (e.g. Agile)
1 Dominant & growing trend

1 Absence of (formal) models
1 Or pb maintaining spec <->m

1 Often Test Driven Dvt (TDD) MBT
% Other

" S
MBT in software development

The chore of writing test cases can be GREATLY relieved if Acceptance
m Formal specs and models are AVAILABLE > tests

m Test cases can be AUTOMATICALLY generated from
models (MBT)

Models System tests

Design Integration tests

Hum ! Matched by the chore of
« Writing MODELS

 Maintaining them Unit tests

Implementation

Component Based Software Engineering

S ET High Level Components
\ : System selection &
Analysis _ _

Design Integration

Integrated System

Rapid Development
Reuse Components
Reduce cost
Flexibility

Ease of integration

Typical Issues in System Dt

Inter ctions

‘Beﬁ?/iour + — A —> ‘Valifj;on

How do | perform system behavioural analysis?
How do | identify integration problems ?

> g%

MODELS could help !

But what if NO model ?

Integrated System 7

" S
MDE & MBT In the reverse

m MDE assumption
Start from model, formal spec

Models = 1st class citizens ©
m Test Driven Development (XP, Agile...)

Tests are spec: 1st class citizens
Formal models ? No way ! @ No time...

m Proposed approach
Derive models from tests, & combine with MBT

m = LEARN models from tests
”Wil‘h Models

CHALLENGE: Reconcile
8

Test-Driven (or code-driven) dvt

" S
Principle
= \

\/

Model _ Tests
\.(’ /\
Requirements /

G N -

Partial, incremental and approximate models

¢ Scenario 1

— Scenario 2

" I
Main Technical Goals

m Reverse Engineering

Understanding the behaviours of the black box components
m by deriving the formal models of the components/system
m Can also serve documentation purposes (tests for doc)

m System Validation
Being able to derive new systematic tests
Analyzing the system for anomalies

m by model checking (wrt properties)

m by developing a framework for integration testing of the system of
black box components

10

Objections Answers

m Model is derived from
bugged components

Derived tests will
consider bug=feature

m Incremental: stopping
criterion ?

m Unit vs system

Combining model-
checking & learning

Integration testing will
reveal errors

m [unable approximated

model of system

m Key notion: counter-

examples

11

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

12

S
Various types of Machine Learning

m Artificial Intelligence (& datamining)

Ability to infer rules, recognize patterns
Learning from samples
E.g. neural networks

m Two major techniques (among others)

Statistical inference from collection of data ->
e.g. Weka tool in (data) testing e

Grammatical inference of language
from theoretical computer science

13

" S
Pioneering inference in SoftEng

m [Peled 1999] Black Box Checking

Using L* + Vasilievski’'s W-method for Model
Checking BB components

m [Steffen, Hagerer 2002] Model generation
by Regular extrapolation
Applied to testing of telecom switch

m Picked up from 2003 by Dortmund, NASA,
Uppsala, Grenoble, Nijmegen, KTH...

14

" S
Learning languages from samples

"Learning from given positive/negative samples”

* Finding a minimum DFA (Deterministic Finite
Automaton) is NP-HARD
—Complexity of automaton identification from given data. [E. Gold 78]

« Even a DFA with no. of states polynomially larger
than the no. of states of the minimum is NP-
Complete

—The minimum consistent DFA problem cannot be approximated within any
polynomial. [Pitt & Warmuth 93]

* Probably Approximately Correct (PAC)

—A theory of the learnable. [L.G. Valiant 84]

"
Active learning (Query learning)

m Active Learning

"Learning from Queries”: inference algorithm can query an
oracle of the language

Angluin's Algorithm L* [Angluin 87]
m Reference algorithm
m Two types of queries: membership, equivalence
m Learns Deterministic Finite Automaton (DFA)
in polynomial time

Dana Angluin

Applied in formal Software Engineering yale University

m Black Box Checking [Peled 99]
m Learning and Testing Telecom Systems [Steffen 02-03] (\‘\(\g
= Protocol Testing [Shu & Lee 08] \’ea(

16

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

17

"
Concept of the Regular Inference
(Angluin's Algorithm L*)

Q

Q(//'
Input Alphabet ¥ L
nput Alphabe 175 ~ e/@%e
Cop -
l O/?/GO,Q(/@/?'G
(/re) $
The Algorithm L* 9\
.
)
Black Box e
Machine b
Oracle
Final Minimum
DFA Conjecture
Assumptions: _ Complexity : O(|Z| mn?)
= The input alphabet X' is known m [I|: the size of the input alphabet

m Machine can be reset))
®m n:the number of states in the actual machine

m m: the length of the longest counterexample

Our Context of Inference (testing s/w)

Test Strategies and heuristics

Input Alphabet X Learned Models can be used to
generate tests to find

m Components having I/O behaviors
‘ dlscrepanC|es

m |/O are structurally complex (parameters)
m Formidable size of input sets

@ \\vﬁ The Algorithm L~

L
\ (6\8 o P
Q
ck Box) % Or

P

System of
Communicating Machine ’7),0/
Black Box N
Components

Enhanced State Machine Models
Mealy Machines

Parameterized Machines
More adequate for complex systems
DFAs may result in transition blow up 19

» BN
Preliminaries

m Mealy Machine: M = (0, I, O, 6, 4, q,)
Q : set of states
[: set of input symbols
O : set of output symbols
0 : transition function
A : output function
q, : initial state

m Input Enabled
dom(o) =dom(41)=Q x I

" Q=1{90 91> 9 95}
m [={ab}
m O={xy}

Running example

20

S
Mealy Machine Inference Algorithm

The Algorithm L,,*

Black Box
Mealy Machine

Assumptions:

The input set 7 is known
Machine can be reset

For each input, the corresponding output is observable

Input set 1

!

Final Mealy
Conjecture

21

" JEE
Basic principles of L,," algorithm

Discriminating

sequences
a b
S (span seq for)| ° S L 7 e
States a y X submit row.col ->
b
S.lI X X record output <-
lookahead aa y X for col
tail state id 2 X X
Observation Table Black Box Mealy Machine
Component
tri: alx
Conjecture: @
minimal FSM y , J
. . . trZ’ X t’,. . a/
consistent with observations - blx 3 Ay
4-

€ is an empty string 22

"
Mealy Machine Inference Algorithm L,,* (1/6)

Initialization
Ew
a b
SM € X X
a y X
b X X
Sy - |
Observation Table (S, E,;, T,,) Black Box Mealy Machine Component
Initialization Output Queries:
m E, =1

=alx

*€ is an empty string
23

"
Mealy Machine Inference Algorithm L,,* (2/6)

Concept: Closed

Ey

a b

Su . X X

a y X

b X X

S || aa y X

ab X X

Observation Table (S, E,;, T,,) Black Box Mealy Machine Component
Concepts:

m Closed : All the rows in S, * | must be equivalent to the rows in S,

Same behaviour = known state

*€ is an empty string
24

"
Mealy Machine Inference Algorithm L,,* (3/6)

Making Conj}?cture tr,
3

tr.
tr, 7
En

b
X X

4

Sy
a y X
b X X
S 1| aa y X
Counterexample:
ababbaa

component's response; X X X X X X y
conjecture's response: X X X X X X X

try: alx

Black Box Mealy Machine Component

try: b/x
25

Mealy Machine Inference Algorithm L,,* (4/6)

Processing Counterexamples

Q

EM
a b
SNl € X X
a y X
b X X
S.. .l]aa y X
ab X X

Observation Table (S, E,;, T,,)
Counterexample:ababbaa

Method:

Add all the prefixes of the counterexample to S,

&
da

ab
aba

abab
ababb

ababba
ababbaa

X

aa
b
abb
abaa

ababa
ababbb

X K Ik X X %X X X |<

X < | X X

X X |X X X %X |xX X | X

X X | X X

26

"
Mealy Machine Inference Algorithm L,,* (5/6)

Concept: Consistency

a b
£ X X @ Concepts:
a @ X yy u
ab X X m Consistency : All the successor
aba @ X XX rows of the equivalent rows must
abab X X Xy also be equivalent
ababb X X XX
ababba X X Xy
ababbaa | vy X yy m First inconsistency
aa y X yy € and ab look similar...
b X X XX but not e.a and ab.a
abb X x X m Later inconsistency:
ab and aba, but not aba and abaa

abaa X X Xy

|
ababa y X yy
ababbb X X Xy

Observation Table (S,,E,;, T;,) 27

"
Mealy Machine Inference Algorithm L,,* (6/6)

Termination: Conjecture = Black Box

b aa aaa baa

& X X Xy XXX XXXy

a y X vy XXX XXXX

ab X X XX XXy XX XX

aba X X XX XXX XXXY

abab y X vy XXX XX XX

ababb X X Xy XXX XXXY

ababba X X Xy XXX XXXY

ababbaa X X XX | XXy XXXX

b X X XX XXy XX XX

aa x | x XX | xXxy XXXX

abb X e XX XXX XXXY

abaa Y X vy XXX XX XX

ababa X X Xy XXX XXXY

ababbb | x |x [xy [ooc [y Complexity : O(|Z| mn?)

ababbab X be XX XXY XX XX

ababbaaa| x | x | xx |xxy | o0 m X : the size of the input alphabet

ababbaabl x |x] xx [Xx | 00X m n:the number of states in the actual machine
Final Observation Table (S,,E,,T,,) m m : the length of the longest counterexample

after processing counterexample
according to L*

28

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

29

"
Other algorithms derived from L’

m Counter-example processing
Rivest & Schapire (1993)

m Do not add prefixes (avoid compatibility check)

m Dichotomic search for discriminating suffix
Complexity falls to O(]Z|n? + n log m)
But flawed (Balcazar 97)

m Corrected by Shahbaz, Irfan and Groz (2009):
Suffix1by1

m Only membership queries
Howar: Zulu competition at ICGI 2010

30

Processing Counterexamples avoiding consistency

checks
Counterexample
(afabbaa >
Add all the
suffixes to E,,
a b
€ X X
a y X
b X X
aa |y | x
(ab) X X

Observation Table (S,,E,, T,,)
before processing counterexample

All rows remain inequivalent
(inconsistency never occurs)

a b aa | baa | bbaa | abbaa
€ X X Xy | XXX | XXXy [XXXXX
a y X YY [XXX [XXXX | yXXXX
b X X XX | XXy [XXXX [XXXXYy
aa y X XX [XXX | XXXY | XXXXX
ab X X Yy | XXX XXXX | YXXXX

Observation Table (S,,E,;,T;,)

after processing counterexample

31

" J
Comparison of the two Methods

Total Output Queries in L,,+ : 64 Total Output Queries in L;,”: 86

& v X Yy XXX XX XX

ak X X XX XXy XX XX

ab. X X XX XXX XXXY

b aa | baa | bbaa | abbaa aba v | x | vy oo | xoox

£ X X Xy | XXX [XXXY | XXXXX abalk X X Xy XXX XXXY
ababba X X Xy XXX XXXY

a y X VY [00C | 00K | YXXXX ababbaa | X | x | XX [xxy | xxxx
b X X XX | XXy XXXX | XXXXY b X X XX XXy XXXX
ab | x | x XX | 000 | XXXy | xxxx S X [x [e ey | 00
abb X e XX XXX XXXY

aa y X VY XXX | XXXX | YXXXX abaa v |Ix |yy [xoxx O
ba X X XYy | XXX | XXXY | XXXXX ababa X X xy | xxx XXXY
bb X X XY XXX | XXXY [XXXXX ababbb x |x | xy [xxx XXXY
aba | x | x XX [xxy | oo | xxxxy ababbabi| x | x | XX XXy | 00X
ababbaaa| X X XX XXy XXXX

abb | X X XX [XXY | XXXX | XXXXY ababbaabl x | x | xx |xxx | xxxx
Final Observation Table (S, E;,T,,) Final Observation Table (S, E;, T,,)
after processing counterexample after processing counterexample

according to L,* according to L*

Comparison of the two Methods

Complexity of L,*:

o(l1F n m) 1] m)
Py —

Complexity of L+:

O(1> n 1)|I| m n?)
SN

I : the size of the input set

n : the number of states in the actual machine

m : the length of the longest counterexample

33

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

34

" S
Other active learning algorithms

m Other data structures: trees vs tables

Kearns & Vazirani (1994): binary tree
= O(]Z|n3 + nm)

Z-quotient: tree & quotient automata
m Petrenko, Li, Groz (HASE 2014)

TTT
m Isberner, Howar, Steffen (RV 2014)

35

"
Mealy Machine Quotients

m Let @ be a set of strings from / then

the states s7 and s2 are ®@-equivalent if they produce same
outputs for all the strings in ®

A quotient based upon ®-equivalence is called @-quotient

qoand q, are ®-Equivalent
O = {a, b, ab, ba, bb, bba} q,and q4 are ©-Equivalent

S

b/x

Mealy Machine M ®-quotient of M

" JEE
Relation between
the Conjecture and the Black Box Machine

cuauotiont Wy N
w-Quotient b/x

Ey (N _alx

D @»

Conjecture from the
Observation Table (S,,E,;,T;,)

Y
X
Y

X X

Closed (and Consistent)
Observation Table (S,,E,;, T;,)

Black Box Mealy Machine
37

Initial k-Quotient

qoand q, are 1-Equivalent: a/0,b/0
a/l q,and q, are 1-Equivalent: a/1,b/1

/0,b/0
()™

a/l,b/1

1-Quotient of M

qpand q, are still 2-Equivalent
q,and q; are 2-Disting. a/1 a/?

Machine M

‘B-Quotient(M) =M ‘ a/l
b/1

b/0 b/1
2-Quotient of M

Inferring a k-quotient R

(example with k=1)

m BFS exploration of traces
of increasing length

m Pruning under node k-
equiv to another one

m Final step: merging node
when trace included, and

redirecting transitions
Groz,Li,Petrenko,Shahbaz TestCom 2008

Extended to arbitrary 2-quotients 2 < [*

all b an \ b/1

/ "

a/0 |/ \b/0)
\ a/O b/O "

DA QA
7 A

t a/0,b/0
a/l,b/1

39

» NN
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues
Counter-example processing
Tree-based (quotient algo)

No Reset

Integration
EFSM

m Related work

40

" S
Motivational example

Reverse-engineer models of Web applications to detect
security vulnerabillities

E-Health app provided by Siemens as a Virtual Machine

NE —
v + single I/O RTT over LAN: < 1 ms

 reset=reboot VM: ~1 minute

¢ Learner

Timewise: reset _is O(10°) RTT in example
Many systems CANNOT be reset AT ALL.

41

" S
Key difficulties when no reset

m How can we know in which state seq is applied ?
m No backtrack possible to check other sequence

m Losing track: we no longer know from where we
apply an input

=» localizer procedure

Can we infer a Black-Box machine without reset?

42

" A
Problem, assumptions, result

Stronger assumptions
Groz, Simao et al 2015 Rivest & Schapire 1993
m Known bound Non nbof = Oracle knows BB, can
states: n<N answer yes or no

m Oracle can provide CE
|Largest CE| = m

m Known W-set for BB = Known Homing
Card(W) = p Sequence for BB

Algo: polynomial in N o
<<O(f N°*2) bound Algo: polynomial in n

~ 3
but mean O(f N'-9) for p=2 O(f m n’)

Lower practical complexity for p<=2

43

"
Example: W ={a, b}, N=3

b/l

Localizer seq. L = a°b

all a/0 al0 al(al() b/0 all al()

] —>2—>2—>2—>) >) —>]—>2 —>)
q0 ?
a0,b0} {al,?} 1
b/0 b/l1 al0 b/0 a/l bl0 b/l b/l
> —>3—>2 ... —>] > 9 > 1 > 13 > 3
q0 ql={al,bl} ql q0 gl ¢2={a0,b1}

| a4

" S
Example (end)

al/l b/0 all all bl0 b/l

45

"
It pays off to learn without reset !

¢ Learner

« single I/O RTT over LAN: <1ms

e reset=reboot VM: ~1minute
finite state

Cost of single reset ~sequence of 10° inputs

 If we know W of 2 elements, itis FASTER to learn
WITHOUT reset !

« If we know W of 3 elements, it may still pay off
depending on number and length of queries

46

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues

Counter-example processing
No Reset

Integration
EFSM

m Related work

47

" I
Integration testing

m Popular issues
Architecture, testability
Integration order, stubbin!\\
Interoperability testing

m Combining integration with Mode. ©arning

Unit learning (1st approach)

Deriving integration tests from combined
learned models

o formal mode

48

" J
Integration exposes models

a,b
X C
; —>
S U S v
Z y
Component U: |,={X,y} Component V: |,={a,b}
b/C
a
b X/a
y y/a bl/y aly
X1z alC
Composed Model: Xaybyaybyay... Livelock!

49

" I
Analysing the problem

m Artefact ?
Possibly: models are approximate

m Check sequence on real system
If Livelock confirmed: report error
If Real sequence differ: counter example

50

"
Integration provides counter-
examples

a,b
X C
; —>
S U S v
Z
Component U: |,={X,y} ComponentV l,={a,b}
X/a
b
@) y/a
X1z
Composed Model: Xaybyaybyay... Livelock!

Real: XaybyaybybC

-> Refine U model with (projected) counter-example
51

System architecture & assumptions

Environment

internal /o interfaces

m System of communicating Mealy Machine Components
m Components are deterministic and input-enabled
m System has External and Internal i/o interfaces

External interface is controllable
External and Internal interfaces are observable

m Single Message in Transit and Slow Environment

52

" S
Overview (simplified)

Verification

—

Inference Components' Analysis & Testing

N .

\ S

\\
\\\\\\\\\m\m\q\\\\\\\\\\\\\\\\

_ Step 4 Goal:
Given: Error
Modular :
Legend: detection
System g

'Tasks performed by testing real components
&Tasks performed on models 53

lterations

C.E.

G
N

M,®

M, (1)

54

C.E.

w0 | TRy

M @

M,

M,

M G

U. T.:
Unit testing

I. T.:
Integration
testing

C.E.:
Counter-
example

" JE—
Learning & Testing Framework

>

) Step 2(a): Compose Models
\

b

‘ . < Step 3: Refine Models <=
Step 1: Learn Models 4
Product
v [problem as
counterexample]
— Step 2(b): Analyze Product
"~ [compositional
Learned Models) o Confirm Problem on System
No < [problem
Compositional S confirmed] \L
Problems
Step 4: >| Terminate
Generate Tests from Product ng discrepancy]
7 A
OoO—O—0O—0
Discrepancy trace
\ 4
Step 5: [error found]
Resolve Discrepancy
(exception, crash, out of memory,...?) [discrepancy as

counterexample]

55

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues

Counter-example processing
No Reset

Integration
EFSM

m Related work

56

"
Learning extended FSM

m Dealing with boolean variables
Th. Berg, B. Jonsson & H. Raffelt FASE 2006

m Parameterized inputs/outputs
no var, arbitrary 1/O functions: Shahbaz 2007
Var. with equality: Berg, Jonsson... 2008

m With variables
Register automata: Howar et al VMCAI 2012

With Data Mining inference of guards and
output functions: Li, Hossen, Groz

57

" J
Combining state & data

Inference

m Connecting to Daikon tool, for dynamic invariant

detection
Shahbaz ISOLA 2007

Daikon: inductive inference of functions from samples
y=f(x) M. Ernst (U. Washington)

m \Weka & FSM inference

Dury & Petrenko: security of Web interface
Li & Groz: EFSM inference
Weka: data mining toolset, clustering (U. Waikato)

58

" I
Inferring for security

m Input parameters critical (e.g. Cross site
scripting...)

m Storing past values: cookies, session IDs

m Non-deterministic values: nonces

m Model: Extended FSM with ND values,
and storage

59

Needham Schroeder authentication

GO\)/ m(py)/

/ =D, D, = ndv,
e P2=Py P Extended FSM model
P> =P P3 ndv, mZ(p2ap3)a
mo(D,, P3), Vs =P, of NSPK Responder
m3(p4)9 p4 = V3/ @ m3(p4)9 p4 = V3/] %2
KO OK

m3(Py), P4 = v3/ my(py), Py #= Vy/

Inferred EFSM model
ms(py)/
Q

State inference // data inference

(9, my)
(10, Q)
€ (23;’3’ (ndV3, S2)
(10, KO)
(5, Q),
MO | (ndv,, Q) (Sf(Vf’
(9, my)
(10, Q)
m4(10) (rr:](i\)’fﬂ’ (ndv;, Q)
m,(5) | (5) (1&50)
my(5) | (ndvs, Q)| G
m,(5)ms(| (5, Q), (1(?1650)
10) (ndvs, Q)| 5y

m,(5)

m;(10)

m,(5)
m,(5)

m, (9)my(
10)

(5,(0,0,0,0)
— (5, ndv)),
(0, (0,0,0,0)
— (0, ndv))

(5, (0,0, 0, 10)

— (5, 600)),

(0, (0, 0, 0, 10)

— (0, 800))

(5, (5, 5, 900,
0) —),

(0, (5, 5, 110,

(5, (5, 5, 140,
10) —),
(150, (5, 5,

150, 10) — o),

(10, (0,0, 0, 0)
— (1)),

(0, (0, 0,0, 0)
— (D)

(10, (0, 0, 0,
10) —),
(0, (0, 0,0, 10)
— (D)

(10, (5, 5, 120,
0) = w),
(130, (5, 35,

130, 0) — w)

(10, (5, 5, 150,
10) —),
(160, (5, 35,

160, 10) — m)

61

» I
Outline

m Motivation: why learning ?
m ML & Soft. Engineering
m Seminal algorithm: L* (Angluin 87)

m Enhancements for various issues

Counter-example processing
No Reset

Integration
EFSM

m Related work

62

" S
Related work

m Active learning in Soft. Eng/Testing
D. Peled (Bar-llan): Black Box Checking (1999)
C. Pasareanu (NASA): Assume-Guarantee Proof(2008)

B. Steffen, H. Raffelt (Dortmund): Dynamic Testing via
Automata Learning (2003-2007)

D. Lee & G. Shu (Ohio 2007): Security protocol testing
B. Jonsson, T. Berg (Uppsala): Register automata

K. Meinke (KTH): Learning Based Testing (& model
checking), Congruence on Abstract Data Types

F. Vaandrager, S. Verwer (Nijmegen): Smartcard

63

" S
Related work

m Many other approaches
Specification mining, becoming popular
m May assume code available, often passive

m Typical papers:
Ammons (POPL 2002) coined the word
Lorenzoli, Mariani, Pezze (ICSE 2008)
Bertolino, Inverardi (FSE 2009)

m Use of (statistical) Machine Learning in
testing

E.g. for test data classification & partition
« refinement (Briand 2008)

Reference book on learning automata

Grammatical For machine learning in
Inference general

Learning Automata and Grammars Many references,
e.g. A. Cornéjuols & L. Miclet

Colin de la Higuera

No book as yet for Software
Testing & machine learning
Planned April 2017

(Springer): outcome of
Dagstuhl seminar 2016

65

