
Combining Model-Based Testing 
and Machine Learning 

Roland GROZ 
Université Grenoble Alpes (COMUE), 
 LIG (Laboratoire d’Informatique de Grenoble) 
France 

TAROT Summer School 2016 



In a nutshell: 

2 

Testing a system is somehow LEARNING 
the behaviour of a system 

n when writing a model is not an option ! 

n Model-based testing…  

Problem: test orderly to learn correct & 
“complete” behaviour  



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
3 



Soft. Engineering trends 
n  MDE & MBT 

¨ Growing trend in some industries (e.g. embedded) 
¨ Derive design, code and tests (MBT) 
¨ Models = 1st class citizens 

n  Non formal (e.g. Agile) 
¨ Dominant & growing trend 
¨ Absence of (formal) models 
¨ Or pb maintaining spec <-> model 
¨ Often Test Driven Dvt (TDD) 

4 

TAROT J 

Rest of the world L 



MBT in software development 

5 

Models 

Design 

Implementation 

Unit tests 

System tests 

Integration tests 

Acceptance 
tests 

The chore of writing test cases can be GREATLY relieved if 
n  Formal specs and models are AVAILABLE 
n  Test cases can be AUTOMATICALLY generated from 

models (MBT) 

Hum ! Matched by the chore of 
•  Writing MODELS 
•  Maintaining them 



6 

Component Based Software Engineering 

Components 
selection 

Integrated System 

Requirement 
Analysis 

High Level 
System 
Design 

n  Rapid Development 
n  Reuse Components 
n  Reduce cost 
n  Flexibility 
n  Ease of integration 

Components 
selection &  
Integration 



7 Integrated System 

How do I perform system behavioural analysis? 
How do I identify integration problems ? 

 

Typical Issues in System Dvt 

Behaviours 
Interactions 

Validation  

Understanding  
a System of 

Black Box/3rd party 
Components  
is a challenge 

MODELS could help ! 

But what if NO model ? 
 



MDE & MBT in the reverse 
n  MDE assumption 

¨  Start from model, formal spec 

¨  Models = 1st class citizens J 

n  Test Driven Development (XP, Agile…) 
¨  Tests are spec: 1st class citizens 

¨  Formal models ? No way ! L  No time… 

n  Proposed approach 
¨ Derive models from tests, & combine with MBT 

n  = LEARN models from tests 

¨ CHALLENGE: Reconcile 
Test-Driven (or code-driven) dvt                   with Models 

8 



Principle 

9 

Component Model Tests 

Scenario 1 

Scenario 2 

Reverse engineer 

Generate Requirements 

Partial, incremental and approximate models 



10 

Main Technical Goals 

n  Reverse Engineering 
¨  Understanding the behaviours of the black box components  

n  by deriving the formal models of the components/system 
n  Can also serve documentation purposes (tests for doc) 
 

n  System Validation 
¨  Being able to derive new systematic tests 
¨  Analyzing the system for anomalies 

n  by model checking (wrt properties) 
n  by developing a framework for integration testing of the system of 

black box components 



Objections  Answers 
n  Model is derived from 

bugged components 
¨ Derived tests will 

consider bug=feature 
 

n  Incremental: stopping 
criterion ? 

n  Unit vs system 
¨ Combining model-

checking & learning 
¨  Integration testing will 

reveal errors 
n  Tunable approximated 

model of system 
n  Key notion: counter-

examples 

11 



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
12 



Various types of Machine Learning 
n Artificial Intelligence (& datamining) 

¨ Ability to infer rules, recognize patterns 
¨ Learning from samples 
¨ E.g. neural networks 

n Two major techniques (among others) 
¨ Statistical inference from collection of data -> 

e.g. Weka tool in (data) testing 

¨ Grammatical inference of language 
from theoretical computer science 

13 



Pioneering inference in SoftEng 

n  [Peled 1999] Black Box Checking 
¨ Using L* + Vasilievski’s W-method for Model 

Checking BB components 
n  [Steffen, Hagerer 2002] Model generation 

by Regular extrapolation 
¨ Applied to testing of telecom switch 

n Picked up from 2003 by Dortmund, NASA, 
Uppsala, Grenoble, Nijmegen,  KTH… 

14 



15 
15 

Learning languages from samples 
"Learning from given positive/negative samples” 
 

•  Finding a minimum DFA (Deterministic Finite 
Automaton) is NP-HARD 

– Complexity of automaton identification from given data. [E. Gold 78] 

•  Even a DFA with no. of states polynomially larger 
than the no. of states of the minimum is NP-
Complete 

– The minimum consistent DFA problem cannot be approximated within any 
polynomial. [Pitt & Warmuth 93]  

•  Probably Approximately Correct (PAC) 
– A theory of the learnable. [L.G. Valiant 84] 



16 

Active learning (Query learning) 

n  Active Learning 
¨  "Learning from Queries”: inference algorithm can query an 

oracle of the language 

¨  Angluin's Algorithm L*  [Angluin 87] 
n  Reference algorithm 
n  Two types of queries: membership, equivalence 
n  Learns Deterministic Finite Automaton (DFA) 

 in polynomial time 
 

¨  Applied in formal Software Engineering 
n  Black Box Checking [Peled 99] 
n  Learning and Testing Telecom Systems [Steffen 02-03] 
n  Protocol Testing [Shu & Lee 08] 
n  … 

Dana Angluin 
Yale University 



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
17 



18 

Concept of the Regular Inference 
(Angluin's Algorithm L*) 

The Algorithm L* 

Input Alphabet Σ 

Final Minimum 
DFA Conjecture 

Oracle 

Black Box 
Machine 

Assumptions: 
n  The input alphabet Σ  is known 
n  Machine can be reset 

Complexity :    O( |Σ| m n² ) 
n  |Σ| : the size of the input alphabet 
n  n : the number of states in the actual machine 
n  m : the length of the longest counterexample 



19 

Our Context of Inference (testing s/w) 

The Algorithm L* 

Input Alphabet Σ 

Final DFA 
Conjecture 

Oracle 

Black Box 
Machine 

System of  
Communicating 

Black Box 
Components 

n  Components having I/O behaviors 
n  I/O are structurally complex (parameters) 
n  Formidable size of input sets 

Enhanced State Machine Models 
Mealy Machines 
Parameterized Machines 

More adequate for complex systems 
DFAs may result in transition blow up 

Test Strategies and heuristics 
Learned Models can be used to 
generate tests to find 
discrepancies 



20 

Preliminaries 

n  Mealy Machine: M = (Q, I, O, δ, λ, q0) 
¨  Q : set of states 
¨  I : set of input symbols 
¨  O : set of output symbols 
¨  δ : transition function 
¨  λ : output function 
¨  q0 : initial state 

n  Input Enabled 
¨  dom(δ)  = dom(λ) = Q × I n  Q = {q0, q1, q2, q3} 

n  I = {a,b} 
n  O = {x,y} 

Running example 



21 

The Algorithm LM* 

Input set I 

Final Mealy 
Conjecture 

Oracle 

Black Box 
Mealy Machine 

Assumptions: 
n  The input set I is known 
n  Machine can be reset 
n  For each input, the corresponding output is observable 

Mealy Machine Inference Algorithm 
The Algorithm LM* 



22 

I={a, b} 

Observation Table 
 

• ε is an empty string 

Black Box Mealy Machine 
Component 

Build queries  
row.col 
 submit row.col -> 
 
 record output <- 
           for col 

Basic principles of LM* algorithm 

a 
ε 

a b 

b 
aa 
ab 

x x 

x y 

x x 

S (span seq for) 
    States 

x y 

x x 

Discriminating 
sequences 

[a] [ε] 

tr1: a/x 

tr4: b/x 
tr2: b/x tr3: a/y 

S • I 
  lookahead 
  tail state id 

Conjecture: 
minimal FSM  
consistent with observations 



23 

I={a, b} 

Observation Table (SM,EM,TM) 

• ε is an empty string 

Output Queries:  
s•e,  s ∈ (SM∪ SM • I), e ∈ EM 

a 
ε 

b 

EM 

SM 

SM • I 

Black Box Mealy Machine Component 

x 

Initialization 
n  SM = ε 
n  EM = I 

a b 
ε 

a 

• = a / x 

x 

x y 

x x 

Mealy Machine Inference Algorithm LM* (1/6) 
Initialization 



24 

SM 

• ε is an empty string 

a 
ε 

EM 

a b 

b 
aa 
ab 

x x 

x y 

x x 

SM • I 

SM 

Concepts: 
n  Closed : All the rows in SM • I must be equivalent to the rows in SM 

¨  Same behaviour  =  known state 
n  Consistency 

Mealy Machine Inference Algorithm LM* (2/6) 
Concept: Closed 

I={a, b} 

Black Box Mealy Machine Component Observation Table (SM,EM,TM) 

x y 

x x 



25 

[a] [ε] 

tr1: a/x 

tr4: b/x 
tr2: b/x tr3: a/y 

I={a, b} 

Black Box Mealy Machine Component 

Mealy Machine Inference Algorithm LM* (3/6) 
Making Conjecture 

a 
ε 

a b 

b 
aa 
ab 

x x 

x y 

x x 

SM • I 

SM 

Observation Table (SM,EM,TM) 

x y 

x x 

tr1 

tr3 tr2 
tr4 

EM 

Counterexample:  
a b a b b a a 

component's response: x x x x x x y 
conjecture's response:  x x x x x x x 



26 

Mealy Machine Inference Algorithm LM* (4/6)  
Processing Counterexamples 

a 
ε 

a b 

b 
aa 
ab 

x x 

x y 

x x 

SM • I 

SM 

Observation Table (SM,EM,TM) 

x y 

x x 

EM 

Counterexample: a b a b b a a 
 
Method: 
 
Add all the prefixes of the counterexample to SM 

a 
ε 

a b 

ab 
aba 
abab 

x x 

x y 

x x 

x x 

x x 
ababb 
ababba 
ababbaa 
aa 

x y 

x y 

x x 

x x 

b x x 

abb x x 

abaa x x 

ababa y x 
ababbb x x 



27 

Mealy Machine Inference Algorithm LM* (5/6)  
Concept: Consistency 

a 
ε 

a b 

ab 
aba 
abab 

x x 

x y 

x x 

x x 

x x 
ababb 
ababba 
ababbaa 
aa 

x y 

x y 

x x 

x x 

b x x 

abb x x 

abaa x x 

ababa y x 
ababbb x x 

Concepts: 
n  Closed 
n  Consistency : All the successor 

rows of the equivalent rows must 
also be equivalent 

n  First inconsistency 
¨  ε  and ab look similar… 

but not ε.a  and ab.a  
n  Later inconsistency: 

¨  ab and aba, but not aba and abaa 
n  … 

a 

a 
xy 

yy 

xx 

xx 

xy 

yy 

yy 

xx 

xy 

xx 

xx 
xy 

yy 
xy 

Observation Table (SM,EM,TM) 

a 

a 



Complexity :    O( |Σ| m n² ) 
n  |Σ| : the size of the input alphabet 
n  n : the number of states in the actual machine 
n  m : the length of the longest counterexample Final Observation Table (SM,EM,TM) 

after processing counterexample 
according to LM* 

28 

Mealy Machine Inference Algorithm LM* (6/6)  
Termination: Conjecture = Black Box 



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
29 



Other algorithms derived from L* 

n Counter-example processing 
¨ Rivest & Schapire (1993) 

n  Do not add prefixes (avoid compatibility check) 
n  Dichotomic search for discriminating suffix 

¨ Complexity falls to O(|Σ|n2 + n log m) 
¨ But flawed (Balcazar 97) 

n  Corrected by Shahbaz, Irfan and Groz (2009): 
¨ Suffix1by1 

n Only membership queries 
¨ Howar: Zulu competition at ICGI 2010 

30 



31 

Processing Counterexamples avoiding consistency 
checks 

a 

ε 

a b 

b 
aa 
ab 

x x 

x y 

x x 

x y 

x x 

Observation Table (SM,EM,TM) 
before processing counterexample 

a b b a a 
Counterexample 
a b 

Add all the  
suffixes to EM 

a 

ε 

a b 

b 
aa 
ab 

x x 

x y 

x x 

x y 

x x 

Observation Table (SM,EM,TM) 
after processing counterexample 

baa aa bbaa abbaa 
xy xxx xxxy xxxxx 

yy xxx xxxx yxxxx 

xx xxy xxxx xxxxy 

xx xxx xxxy xxxxx 

yy xxx xxxx yxxxx 

All rows remain inequivalent 
(inconsistency never occurs) 



32 

Comparison of the two Methods 

Final Observation Table (SM,EM,TM) 
after processing counterexample 

according to LM
+ 

Final Observation Table (SM,EM,TM) 
after processing counterexample 

according to LM* 

Total Output Queries in LM+ : 64 Total Output Queries in LM* : 86 



33 

Total Output Queries in LM* : 86 Total Output Queries in LM+ : 64 

Observation Table (SM,EM,TM) 
after processing counterexample 

according to LM
+ 

Observation Table (SM,EM,TM) 
after processing counterexample 

according to LM* 

Comparison of the two Methods 

Complexity of LM*: 
 

O( |I|² n m + |I| m n²) 

Complexity of LM+: 
 

O( |I|² n + |I| m n²) 

¨  I : the size of the input set 
¨  n : the number of states in the actual machine 
¨  m : the length of the longest counterexample 



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
34 



Other active learning algorithms 

n Other data structures: trees vs tables 
¨ Kearns & Vazirani (1994): binary tree 

n  O(|Σ|n3 + nm)  

¨ Z-quotient: tree & quotient automata 
n  Petrenko, Li, Groz (HASE 2014) 

¨ TTT 
n  Isberner, Howar, Steffen ( RV 2014)  

35 



36 

Mealy Machine Quotients 

n  Let Φ be a set of strings from I then 
¨  the states s1 and s2 are Φ-equivalent if they produce same 

outputs for all the strings in Φ 
¨  A quotient based upon Φ-equivalence is called Φ-quotient 

Mealy Machine M Φ-quotient of M 

Φ = {a, b, ab, ba, bb, bba} 
q0 and q2 are Φ-Equivalent 
q1 and q3 are Φ-Equivalent 
 



37 

Relation between  
the Conjecture and the Black Box Machine 

Closed (and Consistent) 
Observation Table (SM,EM,TM) 

Conjecture from the 
Observation Table (SM,EM,TM) 

EM 

SM • I 

SM 

EM-Quotient 

Black Box Mealy Machine 



38 

Initial k-Quotient 

Machine M 

b/0 

q0 

q3 q2 

q1 

b/1 

a/0 
a/1 

a/0 

a/
1b/
1 

q4 

b/0 

a/1 

b/1 

q0,q2 q1,q3 

a/1,b/1 

a/0,b/0 

1-Quotient of M 

b/0 

q0,q2 

q3 

q1 

b/1 

a/0 
a/1 

a/1 
b/1 

2-Quotient of M 

3-Quotient(M) ≡ M 

q0 and q2 are still 2-Equivalent 
q1 and q3 are 2-Disting. a/1 a/? 
 
 

q0 and q2 are 1-Equivalent: a/0,b/0 
q1 and q3 are 1-Equivalent: a/1,b/1 
 
 



39 

Inferring a k-quotient 
(example with k=1) a/0 b/0 

a/1 b/1 a/1 b/1 

a/0 b/0 
a/0 b/0 

n  BFS exploration of traces 
of increasing length 

n  Pruning under node k-
equiv to another one 

n  Final step: merging node 
when trace included, and 
redirecting transitions a/1,b/1 

a/0,b/0 

Groz,Li,Petrenko,Shahbaz TestCom 2008 
Extended to arbitrary Σ-quotients Σ ⊆ I* 



Outline 
n  Motivation: why learning ? 
n  ML & Soft. Engineering 
n  Seminal algorithm: L* (Angluin 87) 
n  Enhancements for various issues 

¨ Counter-example processing 
¨ Tree-based (quotient algo) 
¨ No Reset 
¨  Integration 
¨ EFSM 

n  Related work 
40 



Motivational example 

•  Reverse-engineer models of Web applications to detect 
security vulnerabilities 

•  E-Health app provided by Siemens as a Virtual Machine 

41 

Learner 
 
 
•  single I/O RTT over LAN: < 1 ms  
•  reset=reboot VM: ~1 minute 

•  Timewise: reset  is O(105) RTT in example 
•  Many systems CANNOT be reset AT ALL. 



Key difficulties when no reset 

n  How can we know in which state seq is applied ? 

n  No backtrack possible to check other sequence 

n  Losing track: we no longer know from where we 
apply an input 
¨ è localizer procedure 

Can we infer a Black-Box machine without reset? 
42 



Problem, assumptions, result 

Groz, Simao et al 2015 
n  Known bound N on nb of 

states:   n ≤ N 

n  Known W-set for BB 
¨  Card(W) = p 

Algo: polynomial in N 
<<O(f Np+2) bound 
  but mean O(f N1.9) for p=2 

Rivest & Schapire 1993 
n  Oracle knows BB, can 

answer yes or no 
n  Oracle can provide CE 

¨  |Largest CE| = m 
n  Known Homing 

Sequence for BB 
 
Algo: polynomial in n 
~O(f m n3) 

43 



Example: W = {a, b}, N=3 

44 

1 

Localizer seq. L = a5b 

a/0 
2 

a/0 
2 

b/0 
1 

a/0 
2 

a/0 
2 

q0 
{a0,b0} 

? 

a/1 
2 

{a1,?} 

q1={a1,b1} 

b/1 
3 

L 

a/0 
2 … 

b/0 
1 … 

q0 

a/1 
2 

b/0 
1 

q0 q1 

b/1 
3 

b/1 
3 

q2={a0,b1} 

2 

3 

a/1 

b/0 

a/0 b/1 

b/1 

a/0 

1 

a/1 
2 

a/0 
2 … 

b/0 
1 
q1 

L 



Example (end) 

45 

3 
a/0 

2 
b/0 

1 … 2 
q0 q1 

a/1 
2 

a/0 
2 

b/0 
1 

b/1 
3 

3 
a/0 

2 
b/0 

1 
b/1 

3 
b/1 

3 

2 

3 

a/1 

b/0 

a/0 b/1 

b/1 

a/0 

1 

L 



It pays off to learn without reset ! 

46 

Learner 
 
 
•  single I/O RTT over LAN: <1ms  
•  reset=reboot VM: ~1minute 

Cost of single reset ~sequence of 105 inputs  
•  If we know W of 2 elements, it is FASTER to learn 

WITHOUT reset ! 
•  If we know W of 3 elements, it may still pay off 

depending on number and length of queries 

finite state 



Outline 

n Motivation: why learning ? 
n ML & Soft. Engineering 
n Seminal algorithm: L* (Angluin 87) 
n Enhancements for various issues 

¨ Counter-example processing 
¨ No Reset 
¨ Integration 
¨ EFSM 

n Related work 47 



Integration testing 

n Popular issues 
¨ Architecture, testability 
¨ Integration order, stubbing 
¨ Interoperability testing 

n Combining integration with Model Learning 
¨ Unit learning (1st approach)   
¨ Deriving integration tests from combined 

learned models 

48 

No formal models L 



Integration exposes models 

49 

X / a  

Component U: IU={X,y} Component V: IV={a,b} 

y / b  a / y  b / y   

U V 

X 
a, b 

y 

C 

Z 

X / Z  

b / C  

y / a  

a / C  

Composed Model:  X a y b y a y b y a y …  Livelock ! 



Analysing the problem 

n Artefact ? 
¨ Possibly: models are approximate 

n Check sequence on real system 
1. If Livelock confirmed: report error 
2. If Real sequence differ: counter example 

50 



Integration provides counter-
examples 

51 

X / a  

Component U: IU={X,y} Component V: IV={a,b} 

y / b  a / y  b / y   

U V 

X 
a, b 

y 

C 

Z 

X / Z  

b / C  

y / a  

a / C  

Real :  X a y b y a y b y b C 

Composed Model:  X a y b y a y b y a y …  Livelock ! 

-> Refine U model with (projected) counter-example 



52 

System architecture & assumptions 

n  System of communicating Mealy Machine Components 
n  Components are deterministic and input-enabled 
n  System has External and Internal i/o interfaces 

¨  External interface is controllable 
¨  External and Internal interfaces are observable 

n  Single Message in Transit and Slow Environment 



53 

Overview (simplified) 

Model 
Extraction 

Reachability 
Analysis 

Step 1 Step 2 

Inference 

Verification 

Given: 
Modular 
System 

Test 
generation 

Step 3 

Step 4 Goal: 
Error 

detection 

Pb 
on real 

System? 

A B 
c

C 
b 

d
D 

y, w e

a
x

Refinement 

Components' Analysis & Testing 

Tasks performed on models 
Tasks performed by testing real components 

Legend: 

Counter example 



54 

I. T. 

C.E. 

Iterations 

M1
(1) 

M2
(1) 

… 

Mn
(1) 

U. T. 

U. T. 

U. T. 

I. T. 

M1
(2) 

M2
(2) 

… 

Mn
(2) 

U. T. 

U. T. 

U. T. 

C.E. 

I. T. 

M1
(3) 

M2
(3) 

… 

Mn
(3) 

U. T. 

U. T. 

U. T. 

U. T.: 
Unit testing 
 
I. T.: 
Integration 

testing 
 
C.E.: 
Counter- 
example 



55 

Learning & Testing Framework 

Step 1: Learn Models 

Step 2(a): Compose Models 

Step 2(c):  
Confirm Problem on System 

Step 3: Refine Models 

Terminate 

[compositional 
problem] 

[discrepancy as 
counterexample] 

[problem  
confirmed] 

Step 2(b): Analyze Product 

Step 4:  
Generate Tests from Product 

Step 5:  
Resolve Discrepancy 

(exception, crash, out of memory,...?) 

Discrepancy trace 

[error found] 

Product 

Product 

[problem as 
counterexample] 

No 
Compositional 

Problems 

[no discrepancy] 

Learned Models 



Outline 

n Motivation: why learning ? 
n ML & Soft. Engineering 
n Seminal algorithm: L* (Angluin 87) 
n Enhancements for various issues 

¨ Counter-example processing 
¨ No Reset 
¨ Integration 
¨ EFSM 

n Related work 56 



Learning extended FSM 
n Dealing with boolean variables 

¨ Th. Berg, B. Jonsson & H. Raffelt FASE 2006 
n Parameterized inputs/outputs 

¨ no var, arbitrary I/O functions: Shahbaz 2007 
¨ Var. with equality: Berg, Jonsson… 2008 

n With variables 
¨ Register automata: Howar et al VMCAI 2012 
¨ With Data Mining inference of guards and 

output functions: Li, Hossen, Groz 
57 



Combining state & data 
inference 
n  Connecting to Daikon tool, for dynamic invariant 

detection 
¨ Shahbaz ISOLA 2007 
Daikon: inductive inference of functions from samples 

y=f(x)            M. Ernst (U. Washington) 
n  Weka & FSM inference 

¨ Dury & Petrenko: security of Web interface 
¨ Li & Groz: EFSM inference 
Weka: data mining toolset, clustering   (U. Waikato) 

58 



Inferring for security 

n  Input parameters critical (e.g. Cross site 
scripting...) 

n Storing past values: cookies, session IDs 
n Non-deterministic values: nonces 

n Model: Extended FSM with ND values, 
and storage 

59 



Needham Schroeder authentication 

60 

s0 

s1 

m1(p1)/ 
p2 = p1, p3 = ndv, 

 m2(p2, p3), 
v3 := p3 

s2 m3(p4), p4 = v3/ 
OK 

m3(p4), p4 ≠ v3/ 
KO 

m1(p1)/ 
p2 = p1, p3 = ndv, 

 m2(p2, p3), 
v3 := p3 

Extended FSM model 
of NSPK Responder 

[ε] 
m1(p1)/ 

p2 = p1, p3 = ndv, 
 m2(p2, p3), 

v3 := p3 

[m1(5)] 

m3(p4), p4 = v3/ 
OK 

m3(p4), p4 ≠ v3/ 
KO 

m3(p4)/ 
Ω 

m1(p1)/ 
Ω 

Inferred EFSM model 



State inference // data inference 
m1  m1  

ε 
(5, m2) 
(ndv3, 
m2) 

(10, Ω) 
(ndv3, Ω) 

m1(5) (5, Ω), 
(ndv3, Ω) 

(10, KO) 
(ndv3, 
OK) 

m3(10) 
(5, m2) 
(ndv3, 
m2) 

(10, Ω) 
(ndv3, Ω) 

m1(5) 
m1(5) 

(5, Ω), 
(ndv3, Ω) 

(10, KO) 
(ndv3, 
OK) 

m1(5)m3(
10) 

(5, Ω), 
(ndv3, Ω) 

(10, KO) 
(ndv3, 
OK) 

m1  m1  
ε 

(5, (0, 0, 0, 0) 
→ (5, ndv)), 
(0, (0, 0, 0, 0) 
→ (0, ndv)) 

(10, (0, 0, 0, 0) 
→ ω), 

(0, (0, 0, 0, 0) 
→ ω) 

m1(5) 

m3(10) 
(5, (0, 0, 0, 10) 
→ (5, 600)), 
(0, (0, 0, 0, 10) 
→ (0, 800)) 

(10, (0, 0, 0, 
10) → ω), 

(0, (0, 0, 0, 10) 
→ ω) 

m1(5) 
m1(5) 

(5, (5, 5, 900, 
0) → ω), 

(0, (5, 5, 110, 
0) → ω) 

(10, (5, 5, 120, 
0) → ω), 
(130, (5, 5, 

130, 0) → ω) 
m1(5)m3(

10) 
(5, (5, 5, 140, 
10) → ω), 
(150, (5, 5, 

150, 10) → ω), 

(10, (5, 5, 150, 
10) → ω), 
(160, (5, 5, 

160, 10) → ω) 
61 



Outline 

n Motivation: why learning ? 
n ML & Soft. Engineering 
n Seminal algorithm: L* (Angluin 87) 
n Enhancements for various issues 

¨ Counter-example processing 
¨ No Reset 
¨ Integration 
¨ EFSM 

n Related work 62 



Related work 

n Active learning in Soft. Eng/Testing 
¨ D. Peled (Bar-Ilan): Black Box Checking (1999) 
¨ C. Pašareanu (NASA): Assume-Guarantee Proof(2008) 
¨ B. Steffen, H. Raffelt (Dortmund): Dynamic Testing via 

Automata Learning (2003-2007) 
¨ D. Lee & G. Shu (Ohio 2007): Security protocol testing 
¨ B. Jonsson, T. Berg (Uppsala): Register automata 
¨ K. Meinke (KTH): Learning Based Testing (& model 

checking), Congruence on Abstract Data Types 
¨ F. Vaandrager, S. Verwer (Nijmegen): Smartcard 

63 



Related work 

n Many other approaches 
¨ Specification mining, becoming popular 

n  May assume code available, often passive 
n  Typical papers: 

¨ Ammons (POPL 2002) coined the word 
¨  Lorenzoli, Mariani, Pezze (ICSE 2008) 
¨ Bertolino, Inverardi (FSE 2009) 

n Use of (statistical) Machine Learning in 
testing 
¨ E.g. for test data classification & partition 

refinement (Briand 2008) 64 



Reference book on learning automata 

 
•  For machine learning in 

general: 
•  Many references, 
•  e.g. A. Cornéjuols & L. Miclet 

•  No book as yet for Software 
Testing & machine learning 
•  Planned April 2017 

(Springer): outcome of 
Dagstuhl seminar 2016  

65 


